Title
Computing Vergne Polarizing Subalgebras
Publication Date
2015
Document Type
Article
Abstract
According to the orbit method, the construction of a unitary irreducible representation of a nilpotent Lie group requires a precise computation of some polarizing subalgebra subordinated to a linear functional in the linear dual of the corresponding Lie algebra. This important step is generally challenging from a computational viewpoint. In this paper, we provide an algorithmic approach to the construction of the well-known Vergne polarizing subalgebras. The algorithms presented in this paper are specifically designed so that they can be implemented in computer algebra systems. We also show there are instances where Vergne’s construction could be refined for the sake of efficiency. Finally, we adapt our refined procedure to free nilpotent finite-dimensional Lie algebras of step-two to obtain simple and precise descriptions of Vergne polarizing algebras corresponding to all linear functionals in a dense open subset of the linear dual of the corresponding Lie algebra. Also, a program written for Mathematica is presented at the end of the paper.
Original Citation
Oussa, V. (2015). Computing Vergne Polarizing Subalgebras. Linear and Multilinear Algebra, 63(3), 578-585. https://doi.org/10.1080/03081087.2014.880434
Identifier
Virtual Commons Citation
Oussa, Vignon (2015). Computing Vergne Polarizing Subalgebras. In Mathematics Faculty Publications. Paper 51.
Available at: https://vc.bridgew.edu/math_fac/51