Bridgewater Review

20th Century Four-Legged "Ting" Extruded and Handbuilt Stoneware
Dorothy Pulsifer
The BRIDGEWATER REVIEW is published three times a year by the faculty of Bridgewater State College. Opinions expressed herein are those of the authors and do not necessarily reflect the policies of Bridgewater Review or Bridgewater State College. Letters to the Editor should be sent to: Bridgewater Review, c/o Editor, Department of Political Science and Economics, Bridgewater State College, Bridgewater, MA 02324. Articles may be reprinted with written permission of the Editor.

Editor: Michael J. Kryzanek, Political Science
Associate Editor: Barbara Apstein, English
Editorial Board:
Stanley Antoniotti, Economics
Charles Fanning, English
Stanley Hamilton, Foreign Languages
Joan Hausrath, Art
Edward James, Philosophy
Joyce Leung, Librarian
William Levin, Sociology
Vahé Marganian, Chemistry
William Murphy, Educational Services
Diane Peabody, Biology
Philip Silva, History
Nancy Street, Speech Communication
Janet Stubbs, Psychology
Photography Editor:
Robert Ward, Media and Librarianship

Design, Layout and Typography:
Joanne Smith, Office of Community Services

TABLE OF CONTENTS

POETRY
Passing Game by Don Johnson 1

EDITOR’S NOTEBOOK
What Is Feminism? A Local View
by Barbara Apstein 2

GUEST OPINION
Sex Discrimination In Sports
by Marjorie Heins................. 3

FACULTY ESSAYS
The U.S. in Central America and the
Caribbean by Michael J. Kryzanek 4
Scientists As People by James Brennan ... 9
An Idea of the College
by Edward W. James 13

GALLERY
Photographs by Ren Norton 18-19

BOOK REVIEWS
On Learning To Read: The Child’s
Fascination With Meaning
by John Deasy 20
The Soul of a New Machine
by Zon-I Chang 21
The Last American Frontier
by Kevin Wall 22

GUEST POETRY
Burren and Connemara Landscape
by Lynn Richmond Feingold 24

CULTURAL COMMENTARY
What Hath Rubik Wrought?
by Thomas E. Moore 25

RESEARCH NOTE
A New Perspective On Revenge and
Justice in Homer by Judith Stanton 26

THE LAST WORD
Reality Into Fiction - 1984
by Nancy L. Street 28

PREVIEW
Coming in the next issue
of Bridgewater Review . Inside Back Cover
Passing
Game

by Don Johnson

Going backward
All of me and some
Of my friends are forming a shell . . .

James Dickey, "In the Pocket"

Fading back, fading, not
looking downfield yet
he knows his audibles have re-drawn
the routes faintly chalked in the minds
of his three receivers, that already
they sprint past their called
down-and-outs toward flags he knows
will be open when he pivots
plants and throws behind a line
ideally cupped to shed stunting tackles
and when the ball spirals up,
floats toward the cradling arms
of the man alone in the end zone,
it draws twenty years of pain
from his sprung shoulder.

Under this blaze of lights the odor
of earth rides through him, lime
burns like a drug in his nose
and it is finally clear, perfect.
The crowd routinely leaps to its feet
but is soundless. No whistles blow
as he turns his back on the officials,
trots to his huddled friends whose faces
like the scoreboard clock say, "Go."
Then he calls the play he knows
he will change at the line and does,
certain there will be no conversion
no defense, only passing, passing
as he drops back, fades.

Don Johnson, former associate editor of the Bridgewater Review, left Bridgewater to assume the position of English Department chairman at East Tennessee State University. As associate editor of the Review Don was instrumental in developing the magazine during those early days when so much had to be done. But Don was more than just an associate editor. At Bridgewater he was a recognized poet and scholar, a friend to countless students, a singer of country songs and a fine former quarterback. He will be missed both on and off the field. We at the Review wish Don and his family happiness and good fortune.
What Is Feminism? A Local View

The Women's Movement has been with us for fifteen years now, and the feminist consciousness seems to bombard us from all directions. In one recent edition of the Sunday Globe alone, Gloria Steinem, editor of Ms. magazine, asserts that women are still victims of the caste system, while Natasha Josefowitz, a professor of management, exhorts women who want to succeed in the work force to be "physically and verbally assertive." We learn that Phillips Exeter Academy has established a Committee to Enhance the Status of Women, while a Globe editorial takes Esquire magazine to task for including only three women in an anniversary issue which claims to feature the work of "fifty of America's foremost living writers." Another editorial castigates Kevin White and David Finnegan for referring to the city of Boston as "She."

From a more local perspective, what do Bridgewater freshmen think about the feminist movement? I conducted an informal survey by asking the sixty students in my freshmen English Composition classes to write essays defining feminism and explaining whether or not they are feminists.

My dictionary defines "feminism" as "a doctrine that advocates or demands for women the same rights granted men, as in political and economic status," and most of the students adopted a similar definition. Yet when it came to explaining whether or not they were feminists, their essays revealed a curious tentativeness and ambivalence. Surprisingly, many of those who defined feminism in a way that showed sympathy with its objectives states categorically that they were not feminists. Marie, for example, describes the goals of feminists in language that suggests approval:

Their beliefs are that women should have as many rights as the men do. This can pertain to salaries, higher positions in jobs and supporting a family.

Paradoxically, she then appears to disassociate herself from these goals by adding, somewhat hesitantly, "I would not say that I am a feminist." The contradiction appears in more dramatic form in Jeannine's essay:

Feminism is an idealistic view of life, it is an attempt to have women recognized as equal to men. From the start of recorded history, women have been treated almost as pets. The Romans didn't even consider women as citizens. In today's society, many people feel women should stay home, 'barefoot and pregnant.'

But, having composed a diatribe worthy of the most militant feminist, Jeannine appears to recant:

I don't put myself in the category of feminist, although I do feel that women and men should have the same opportunities.

Joe is more logical, but no less ambivalent: he realizes that if he supports the goals of feminism, he must be a feminist, but he is reluctant to admit it. "I am in favor of passing the E.R.A., and I believe women should always be treated as equal to men," he writes, then adds with uncertainty, "and if this defines a feminist, I must be one."

Why are these students who support the ideals of feminism so reluctant to identify themselves as feminists? Laurie's essay provides a suggestion:

Feminism to me tends to indicate a multitude of different ideas that someone tried to lump together. When real feminism began to grow, women only wanted equal rights to go out and do things that men had been doing for years. As time passed, they began to get offended if a man was kind enough to offer to open a door for them. I find myself getting very irritated with women like that because they seem to be stretching the point a little too far.

The problem, then, is a word whose meaning is subtly changing, and this change may account for the apparent contradictions in the students' essays. For these freshmen, "feminism" refers to more than concern with political and economic rights. Despite the dictionary definition, the term now appears to suggest an ideology which denies sex differences and insists that men and women be treated exactly the same. Although the students quoted the traditional definition, when they refused to identify themselves as feminists they were responding to the new one.

Donna, like Laurie, attempted to sift through the different definitions of what turned out to be a complex term:

I do not consider myself a feminist. I do not believe that women are inferior to men. I feel that women can do a lot of jobs that men can do, but I do not think they can do all the jobs that men can do. I think that some jobs are meant to be done by men, and some jobs are meant to be done by women.

Richard's essay illuminated another aspect of the new meaning of feminism: the suggestion that its adherents become masculinized.

I saw a woman at the health club yesterday, pressing one hundred and fifty pounds over her head. She had a haircut reminiscent of Moe of "The Three Stooges," a husky body and bulging biceps. "Feminist," I thought. There I was with my subconscious mind coming into play. That was the image I always had of feminism.

Although only a few were able to articulate the fact, many of these students were responding to the newer suggestions of the term "feminism": to them it connotes the refusal to acknowledge that women are different from men in ways beyond the biological, the denial of femininity. Buttressing these ideas are perhaps also the visual images of angry women who issue bewildering lists of demands and who regard men as enemies, and of controversial points of view on such highly charged issues as abortion and homosexuality. The defeat of the E.R.A., the continuing strength of the anti-abortion movement, and the fact that the Reagan Administration has shown little interest in women's rights suggests that these students' views may reflect attitudes in the nation as a whole. If this is the case, the connotations of the term "feminist" may, ironically, have become negative enough to undermine the very cause that its adherents seek to promote.

Barbara Apstein
Athletic competition builds character in our boys. We do not need that kind of character in our girls.”

Twelve year-old Denise Simpson is one of the stars of the Upton Youth Club soccer team. By 1983, Denise had been playing on the team, which represents the towns of Upton and Mendon in Worcester County, for three years. There was only one problem: in the spring season, Denise was not permitted to play.

That was because spring soccer competition in eastern and much of central Massachusetts is dominated by the Boston Area Youth Soccer League (BAYS), and, until Denise and her parents brought BAYS to court, the league required strict sex segregation on all local teams that participated in league competition. If a town did not have a girls’ team, as Upton and Mendon did not, then a girl could either try to find a nearby town that did have one and might accept her, or she could sit the season out.

Denise and her parents were not satisfied with these alternatives. For one thing, transportation to neighboring towns was a problem. For another, Denise wanted to play for the home team, as her brother and her friends did. Finally, Denise was a superior player who needed the challenge of coed competition. The team’s coach and manager both wanted her to play.

The directors of BAYS firmly refused to consider it. If the team dared to include a girl, they said, it would forfeit all its league games.

The Civil Liberties Union of Massachusetts took Denise’s case to court and, in May 1983, won an injunction requiring BAYS to let Denise play. In October, prodded by the injunction, BAYS revised its rules to permit coed teams to compete in its “boys” division. BAYS refused, however, to rename the division to reflect the change. The board strongly felt that boys and girls should be encouraged – even if they could not legally be required – to play on separate teams.

The BAYS case dramatized the paradox of sex discrimination in athletics. Denise faced a classic type of discrimination: if not for her sex, she could have played on the team. Even if there had been a girls’ team at her age level in town, it obviously would have been discriminatory to refuse to let Denise play on the boys’ team if she could qualify.

But girls’ and women’s sports have been kept separate for so long that it is almost unthinkable to most of us that segregation -- what are conveniently but mistakenly called “separate but equal” teams -- should be eliminated. This is, of course, because we assume, with some justice, that men’s and women’s athletic abilities are not equal. Thus, the teams are kept separate precisely because they are not equal. If integration were required, so the conventional wisdom runs, most women would be eliminated from town, league, or school athletic competition.

Most courts confronted with legal questions involving sex discrimination in athletics have accepted this logic and assumed, often without much analysis, that “separate but equal” is lawful. That is, as long as opportunities, facilities, financial support, and coaching are offered equally to girls’ and boys’ athletic programs, segregation is acceptable. BAYS took this assumption an extra step: segregation was not only acceptable, all other things being equal -- it was necessary.

One problem with this approach is that “all other things” rarely are equal. Separate teams are created because girls are presumed to have inferior athletic ability. It is not really clear to what extent the ability gap is culturally rather than biologically determined. As the U.S. Supreme Court has observed, it is “habit, rather than analysis or reflection,” that accounts for most sex discrimination. It may be that segregated teams operate as self-fulfilling prophecies.

This is not to say that males, at least as adults, are not on the average bigger and stronger than females. It takes no sociological treatise to demonstrate this obvious fact. Size and strength give adult males advantages in many sports. And if competition for places on teams in these sports at the high school level or above were fully integrated, few females would qualify.

But this does not justify strict segregation in all sports and at all age levels. Nor is it a reason ever to bar the exceptional female athlete of any age from trying out for the best team on which she is able to compete. It is probably feasible to have coed competition in virtually all sports up to the age of thirteen or fourteen.

Given training, encouragement, and true equality at the younger ages, girls and women may be better able to compete on an integrated basis on many sports, even after puberty. Tennis, skiing, golf, archery, swimming, diving, gymnastics, volleyball, track, even soccer, may turn out to be amenable to coed competition. If equality and integration are promoted to the extent they are feasible, we all could be surprised at the athletic abilities -- not to mention the “character” -- that develops in our sisters and daughters.

Marjorie Heins is a staff attorney at the Civil Liberties Union of Massachusetts. She represented the Simpson family in their lawsuit against BAYS.
The revolution in Central America has not only helped most Americans learn where El Salvador and Nicaragua are situated on the map, but, more importantly, it has placed before them two opposing interpretations of what is actually going on in that part of the world. By the Reagan Administration, the American public is told that the fighting in this region is a result of communist expansionism. The Salvadoran rebels, in concert with the Nicaraguans and the Cubans, are seeking to spread their influence and establish Marxist satellite states. Those who disagree with the Reagan position claim that the outbreak of revolution stems from social and economic inequality. After decades of elite rule maintained through corrupt, repressive and unlawful means, peasants and the urban poor are taking up weapons to bring an end to the injustice.

Although these two approaches to the conflict in Central America both evolve from defensible positions, the American public should be aware that the turmoil in this region can be examined from a third perspective. The revolutions in Nicaragua and El Salvador have also occurred because United States influence is declining in this strategic area; and as a result, our ability to contain the fighting and direct the future development of these countries is diminishing.

Since the turn of the century, the nation-states that rim the Caribbean have become part of our sphere of influence. The direction and development of these nations has been closely linked to, if not controlled, by decisions made in Washington. Presidents, starting with Theodore Roosevelt, have felt an obligation to intervene whenever economic and political circumstances in this region warranted action. Not surprisingly, American corporations targeted the area as ripe for investment and profit making; tourists streamed down to the beaches and casinos thinking of these countries as mere extensions of American soil; and military and diplomatic strategists felt little hesitation in recommending the sending of troops or civilian advisors to secure the peace or straighten out the finances of our neighbors in a manner reminiscent of a landlord taking care of his property.

For a good portion of the twentieth century the United States maintained without significant challenge its hold on the Central American-Caribbean sphere of influence. But a series of events starting with the Cuban revolution in 1959 weakened our hold on the region, and helped contribute to the unrest in places like El Salvador and Nicaragua.

The Breakup of the Central American-Caribbean Sphere of Influence

Castro's Geopolitical Revolution

Cuba’s revolution of 1959 and its subsequent drift into Marxism has been the topic of endless analysis. Debates still rage over whether the United States should have acted more forcefully to bring the Castro regime down or whether we needlessly created animosity with a communist regime one hundred miles from our shores. The debates notwithstanding, the fact remains that Fidel Castro developed a Soviet satellite in our traditional sphere of influence and thereby singlehandedly transformed the geopolitical forces in the Central American-Caribbean region. For the first time a revolution with definite anti-American overtones led by an avowed communist succeeded in our “backyard.”

Not surprisingly, the history of U.S.-Cuban relations since 1959 has been marked by a series of attempts to topple the Castro government and reassert our complete domination in the hemisphere. Almost immediately upon Castro’s revolutionary victory, the United States responded with sugar embargoes, diplomatic slights and harsh words. Later on the American public would find out about our clandestine efforts to “destabilize” the Castro regime through assassination, sabotage and the infamous Bay of Pigs invasion.

But despite these efforts, Castro held on and in some respects even flourished. With considerable Soviet aid (now estimated at over three billion dollars a year), a supportive population and some wise social programs aimed at eradicating disease and illiteracy, Castro managed to hold up to the world an alternative to United States capitalism and liberal democracy. Within a matter of a few years, the United States and the American way were being challenged by an upstart revolutionary. What is perhaps even more significant is that Castro’s triumph was well received throughout Latin
America. After years of United States control and domination, the Latins finally could look to someone who was successful in breaking the American hold on this region.

As the Cuban revolution enjoys its 25th anniversary, the excitement and aura that it once created has disappeared. There is much to criticize about the industrial and agricultural failures, the political prisoners and the dependence on the Soviet Union. The development problems inside Cuba, however, do not diminish the fact that Castro's revolution not only changed life in that country, but also radically altered the face of hemispheric power relations. Castro's revolution served notice that America was no longer unchallenged in the region.

The Big Stick in the Caribbean Sea

The OPEC oil price escalation also had an emotional impact on United States relations in its sphere of influence and served to further lessen our ability to dominate the economics of this region. Facing enormous debts as a result of payments for oil, the countries of Central America and the Caribbean sought greater access to United States markets and more advantageous terms of trade. The response from the United States, which also had severe balance of payments problems, was either to deny access or to pass protective legislation that increased trade barriers.

The reaction to these steps by the United States was unusually hostile and was expressed in terms that signaled a new found independence and a determination on the part of these countries never to permit their future to depend on American goodwill. As a result, the leaders of many Central American and Caribbean nations became more aggressive in their trade talks with the United States and intensified their efforts to open up their economies to new sources of trade, aid and investment. The days of one-sided, paternalistic commercial and financial relations with the United States were over.

The Sandinistas and the "No Second Cuba" Theory

One of the major policy positions taken by the United States Government after the Cuban revolution was that this country would never permit "another Cuba." Presumably a "second Cuba" would begin the process of falling dominoes in Latin America and create a threat to our national security.

Under President Lyndon Johnson the United States exercised its power to prevent a "second Cuba" when it sent 23,000 troops to the Dominican Republic in 1965 to put down an urban civil war. Since the Johnson Administration was able to stop the fighting and diminish the influence of the leftist rebels in the new government that was formed, Washington was pleased with the "no second Cuba" policy. It seemed that we could stop revolution and regain our control over this region through swift military intervention. Castro would perhaps be just an aberration.

But the Vietnam War followed, and we learned to our dismay that not all interventions end in success. We also lost a good deal of our enthusiasm for interfering in the internal matters of another country, no matter how threatened an ally was by communist aggression. The memory of domestic opposition to the war and the costs, human and monetary, of fighting a guerrilla war made Presidents Gerald Ford and Jimmy Carter reluctant to play policemen to the world.

Even though the Vietnam War ended, the revolutionary aspirations of people in the less-developed countries remained active. This time the revolution was in Nicaragua, where a guerilla army called the Sandinistas was pitted against the repressive, but pro-U.S. Government of Anastasio Somoza. When the Sandinista rebels showed remarkable ability to sustain their war and later achieve significant victories over U.S. trained government troops, our country was once again thrust into a dilemma over the proper response to a leftist challenge in our sphere of influence. The United States could exert its economic, military and propaganda power to keep...
Somoza in office and thereby retain the viability of the "no second Cuba" doctrine, or it could refuse to become entangled in the internal guerrilla war to uphold the government of one of Latin America's most repressive and corrupt dictators.

In an earlier era the choice would have been an easy one, as the United States sent out its fleet and a contingent of Marines. But in the late 1970s, on the heels of our Vietnam debacle, the Carter Administration revealed the internal conflicts that come with the knowledge that time and circumstances have changed the way the U.S. views itself and its sphere of influence. A combination of public hostility to Somoza, Congressional opposition to further intervention, criticism from Latin American nations, and a President who was reluctant to exercise American might created a policy marked by apprehension, vacillation, contradiction and half-hearted support for both sides. Even though the Nicaraguan revolution was following a course somewhat similar to the Cuban revolution, the Carter Administration was both unable and unwilling to take steps that would firmly reestablish our control of this vital country.

By refusing to intervene to stop the Sandinistas, the United States not only negated its "no second Cuba" pledge, but more importantly it acknowledged that the circumstances once conducive to an aggressive maintenance of our sphere of influence had changed dramatically. To some, this was an example of what came to be called the "Vietnam syndrome," but to others it was rather another sign that we could no longer control the destiny of neighboring countries as we had in the past. Whatever the reason, the revolution in Nicaragua further adjusted the geopolitics of the region and set the stage for El Salvador and a new U.S. President who approached our status in Central America and the Caribbean in a far different manner.

Ronald Reagan and the Attempt at Regaining Our Sphere of Influence

When Ronald Reagan came into office in January of 1981, he made it clear that his Administration would seek to reestablish a respected United States presence in the Central American-Caribbean region. Using his strongly anti-communist beliefs as a springboard for action, Reagan sought to meet head on what he felt was Marxist revolution at our doorstep. Unlike Jimmy Carter who abhorred Somoza's human rights violations, Ronald Reagan emphasized combating communism and protecting our southern border from revolution.

To achieve his aim, Reagan reminded the American people that Central America was within our sphere of influence and therefore had to be protected from internal instability and external expansionism. The President renamed this region the Caribbean Basin to help accent its importance and proximity to the United States and reintroduced the domino theory to suggest that failure to shore up pro-U.S. governments in this region could eventually lead to a series of crumbling governments, ending with Mexico. The message came through clearly -- the United States must reassert its ability to control the future of this region, because the decline of our influence has created a significant threat to the nation's security.

The means to achieve this reassertion of American power were presented in the form of a two-pronged program that linked capital formation with containment. In 1981, the Administration unveiled its Caribbean Basin Initiative (CBI), which sought to use free trade agreements and healthy doses of foreign aid as a means of drawing the countries of the region closer to the United States, while also encouraging American businesses through favorable tax incentives to regain our competitive advantage. The foreign aid component of the CBI -- $350 million -- was passed by Congress in 1982, but it was not until August, 1983 that the trade and tax sections of the bill were voted out, only to have the Congress limit the tax incentives to conventions and cruise ship deductions and place a number of protective stipulations on the entry of certain goods into the United States. Despite the delay and the restrictions, the CBI remains a key part of the Reagan policy to expand our influence in the Caribbean Basin.

While the CBI was working its way through the Congress, the Reagan Administration was embarking on its most controversial policy initiative -- containment of further communist expansion in our sphere of influence. The policy of containment was used by this country in Europe after World War II as a means of preventing the further advance of Soviet communism. In the Reagan view, containment could once again be employed as a way of preventing the spread of revolutionary activity in Central America. To implement the policy of containment, the Reagan Administration began pumping millions of dollars of economic and military
assistance to pro-U.S. countries in the region; more civilian and military advisors were sent to train the armies of El Salvador and Honduras; sophisticated radar and tracking equipment was used to pinpoint the transfer of weapons from Cuba and Nicaragua to the rebels; and an occasional resort to old-fashioned gunboat diplomacy served to remind the rebels and their supporters that the United States was serious about stopping the spread of communist influence in the area.

The epitome of Reagan's containment policy can be seen in the October, 1983 invasion of the tiny island of Grenada. With the assassination of Grenadian Prime Minister Maurice Bishop (who was beginning to moderate his socialist revolution and move closer to the United States) by doctrinaire Marxists with ties to Cuba and the Soviet Union, the Reagan Administration wasted little time in sending the troops to restore a pro-United States government. Although eighteen U.S. soldiers were lost and scores wounded, the Grenadian invasion was judged a stunning success.

But despite the strong popular support for the Grenada invasion in the United States, President Reagan has become more aware that in places like El Salvador and Nicaragua regaining the initiative from the Marxists may not be as quick and easy as on a Caribbean island with 100,000 citizens and a militia of a few thousand. Already public opinion has shown disfavor with Reagan's Central American policy. Many in Congress are bothered by the overt signs of war and the covert machinations of the CIA, and our neighbors in Latin America are fearful that U.S. involvement in the Salvadoran revolution may expand the fighting to all of Central America. To those with vivid memories of the Vietnam War era, the answer is not containment but negotiation with the rebels, and with their supporters in Nicaragua and Cuba.

For its part, the Reagan Administration seems cautious about entering into negotiations with the rebels and their supporters and more interested in winning a victory. Although the Administration is reluctant to state it publicly, a victory in El Salvador means more than just a defeat of the insurgents; it also would serve as a clear sign of United States resurgence in Central America and our willingness to follow a course of action that combats the spread of a foreign ideology in our traditional sphere of influence. It is this concern with reestablishing our preeminence in Central America that has made winning in El Salvador of critical importance. El Salvador has become more than just a communist-inspired guerrilla war; it is now a test of our ability to maintain control in a region that we view as vital to our national interest.

Limits on Reagan Policy in Central America

Although President Reagan is following a path designed to strengthen our position in Central America, it is important to point out that the attainment of his objective may be complicated by new forces at work in the region and at home. One of the most recent developments in the Central American crisis is that the United States faces a more unified and vocal Latin American community of nations. Whereas in the past the United States "handled" an uprising or a debt collection fracas by itself and cared little for the views of its neighbors, today the United States cannot ignore the fact that there are other influential actors in this revolutionary drama. Countries like Mexico, Colombia, Venezuela and Panama that form what is termed the Contadora group are unwilling to take a backseat in this crisis. They have lobbied hard to force a negotiated settlement and have shown the Reagan Administration that they can serve as effective intermediaries with the rebels. Moreover, these countries have stated categorically that they will not tolerate a land war in this region, especially one that involves United States troops. It is this unity of purpose and forceful presentation of concerns that has reminded the President that to act in Central America without recognizing the impact on the region would be foolhardy and counterproductive.

What is potentially more complicating and serious than the new found influence of the Latin American nations is that the Central American crisis has begun to be viewed in terms of an East-West confrontation. Even though Khrushchev took his missiles out of Cuba in 1962, Russian designs on the Caribbean Basin have not diminished. In fact, recent analysis confirms that Central America and the Caribbean have seen a marked increase in the Soviet presence in the last ten years. Soviet trade representatives, arms merchants, cultural exchanges, KGB agents, navy flotillas, fishing fleets and diplomats can be found throughout the region.

The Soviet presence may indeed serve to support President Reagan's claims of communist expansionism at our doorstep, but it also complicates a solution to the crisis and heightens the danger of a superpower showdown. What was a relatively small and
localized conflict could evolve into regional competition between the United States and the Soviet Union for control of the Caribbean Basin. With Cuba supplying Soviet arms to the Salvadoran rebels, Russian Mig-21’s rumored to be heading for Nicaragua and a Soviet base near completion in Grenada before U.S. troops arrived, the Reagan Administration has enough examples of Soviet designs on this region to justify our involvement. Unfortunately this competition can develop a life of its own and build to proportions where the war in El Salvador becomes secondary to the confrontation between the two superpowers.

The key to avoiding a U.S.-Soviet confrontation in Central America is Cuba. Since taking office, the Reagan Administration has spoken harshly toward the regime of Fidel Castro and has been unwilling to normalize relations with Havana. The Grenada invasion where U.S. troops killed twenty-four Cubans and captured hundreds of others has done nothing to bring these two enemies together. In fact, the inclination of the Reagan Administration at present seems to be to meet the Cuban expansionist efforts head on even though there are dangers in such a policy. It is important for the President to remember that such a policy position could easily spur the Russians to become directly involved in the Caribbean Basin in order to insure that Castro and his revolutionary allies will not be intimidated by the United States.

Finally, when one speaks of the complex nature of public policy formation and implementation in Central America, the impact of domestic politics cannot be ignored. A great deal has changed in the United States since Theodore Roosevelt “took” the Panama Canal or Woodrow Wilson sent General Pershing across the Mexican border to capture Pancho Villa. Today, foreign policy development is conducted in an atmosphere of Congressional oversight, extensive media coverage, interest group pressure and forceful public opinion.

Much has been made by President Reagan of our unwillingness since Vietnam to utilize this country’s strength to achieve foreign policy objectives. But this so-called unwillingness on the part of past presidents stems not so much from a Vietnam backlash as from a recognition that it is now more difficult to initiate and carry through to completion a specific foreign policy, especially one which calls for some form of military involvement. Today, a president who seeks to take aggressive action in order to combat communism or maintain our influence must contend with legal restraints, popular demonstrations, partisan politics and a sceptical citizenry. The roadblocks to successful foreign policy-making are so numerous that national leaders must be extremely strong-willed or courageous to propose and carry out a particular course of action.

Already, President Reagan’s efforts to regain influence in Central America point up the limits of foreign policy-making in our democracy. The spending of additional millions of dollars on the CIA’s covert war in Central America has captured public opinion and compete with the President as he seeks support for further involvement, and a host of human rights organizations place unrelenting pressure on the White House to curtail its support of rightist military officers, even though these officers are firm adherents to the objectives of the Reagan Administration.

So far, Mr. Reagan has met his critics head on and taken this country further into the Central American revolution. But what the President must remember (as Lyndon Johnson and Richard Nixon found out to their dismay) is that there is a point beyond which a president’s will and communicative skills cannot easily overcome the labyrinth of opposition to a particular foreign policy decision. In modern day American politics, foreign policy formation and implementation must derive from consensus rather than from the determination of the White House. If Mr. Reagan is to succeed in reestablishing United States preeminence in the Caribbean Basin, he will have to do so by convincing the numerous constituencies in this country that it is in our national interest to engage in activities that bring us perilously close to a Vietnam-like commitment.

A Look At The Future of Our Sphere of Influence

Americans do not admit defeat easily nor accept the view that our power in the world arena is declining. And yet, it is essential for every major nation to periodically assess its standing in the world or in a particular region of that world and make some judgements on the proper course to follow.

There is no question that our position in the Central American-Caribbean sphere of influence has changed since the early 1960’s. We should not be surprised by the competition, the revolution, the nationalism, and our inability to control our neighbors for our own interests. After nearly a century of dominance, a decline in influence was inevitable.

But what is surprising is the vigor that the current Administration brings to its attempt at regaining our position in this sphere. The Reagan Administration is clearly on a mission to assure that friendly governments remain in power in Central America and that hostile movements are unable to spread their influence. President Reagan firmly believes in the domino theory and the possibility that our southern border could be jeopardized by left-wing revolution traveling northward from El Salvador. The dollars, the guns, the advisors, the aircraft carriers, and the tough talk stem from a real fear that we are on the defensive in our sphere of influence and may not be doing enough to regain the initiative. Grenada may be the first step in a long process of regaining complete control of our sphere of influence.

The Reagan analysis of our decline in the Caribbean Basin may be exaggerated, since many Administration critics do not see a revolution in Mexico, or a United States encircled by the communists. And yet, this American President has embarked on a mission to establish our power position as it was prior to 1959. As to the success of the Reagan mission, only time will tell. The President’s actions may strengthen our hold on the Caribbean Basin or they may alienate our neighbors and encourage the revolutionary left to dig in deeper. The only certainty about the Reagan mission is that it comes at a time when the forces of change can be found everywhere. Not only has our sphere of influence changed, but so have the internal political conditions in the United States necessary to assure a successful mission. The future of United States policy in its sphere of influence thus depends on how well we adjust to the new geopolitics of the region and on whether we are able to muster the same vigor as our President as he sets out on this mission.

Michael J. Kryzanek is an associate professor of Political Science. He received his Ph.D. from the University of Massachusetts and has conducted research on the Dominican Republic and other Caribbean nations. His book on the Dominican Republic (co-authored with Howard Wiarda) was published in 1982. He is currently working on a book on U.S.-Latin American relations to be published by Praeger in 1985.
What kind of people are scientists and how do they think?

From our first course in science, we begin to learn about the "scientific method" as if it were some sort of magical technique. We are told that a scientist must first make observations, then formulate an hypothesis, design and conduct experiments to test the hypothesis (to test it, not to prove it), construct a theory supported by adequate experimental or observational proof, and finally, if there is adequate support from many sources of evidence, add another principle to the discipline. Yet there are few, if any, scientists in my experience who think much about such a structured procedure in their work. The so-called scientific method is more often found in general textbooks than as a consciously utilized technique.

Certainly scientists observe natural phenomena around them, and anyone who is curious about natural phenomena is almost bound to begin to speculate about the underlying causes. It is usually wise for a person formulating hypotheses about observed phenomena to preface such guesses with, "Intuitively, it looks to me like, . . .," for intuition is a significant and valuable part of the process. The scientist with a good mind and good background can run the new observations through a vast mental array of similar and dissimilar related events and make well-educated guesses about the mechanisms involved.

Scientists then are analytical in their manner of thinking. Probably without realizing it, they observe the nature of things in a new situation, hypothesize intuitively, and begin to devise experiments to test their ideas.

Obviously, to use this method of analysis, a scientist must have a large amount of current information available for comparison with each new idea. Scientists must relate, interrelate, index, cross-index, and file away in the brain the multitude of abstractions that are the tools of the trade. If such people seem preoccupied or distant from everyday matters, there may be a reason.

Only an immature or non-practicing scientist, or maybe even a pseudoscientist views a scientific discipline as immutable. The inherent tentative nature of science requires an unusual state of mind. The so-called "facts" of science are really only temporary points of reference: viewed from another angle or under different conditions, they may prove to be something much different than originally thought. Scientists, alert to this situation, know that they must occasionally reject basic tenets in their knowledge and replace them with new ones.

In writing style, scientists may even be more distinctive than in the other

The overwhelming number of scientists are fact gatherers . . .

characteristics we have come to associate with them. Sentences are short, clipped, and to the point; every word is precise and meaningful. In non-scientific literature, English is often redundant and somewhat wasteful. A missed word here or there or the wrong letter in a word seldom causes any misreading or misunderstanding. However, the labels, terms, and statements of the scientist can assume exactly opposite meanings with misplaced or substituted symbols.

Scientific publications follow a strict pattern of arrangement into categories. Sometimes the traditions of past work are the only significant reason for the organization of a research report. Scientists are extremely careful to avoid any hypothesizing or interpreting in sections that report their results. Methods and materials are always listed in enough detail to permit reproduction in another lab. Precedence of publication date means everything in assigning credit for discovery, and young scientists are usually in a hurry, to prevent being "scooped."

A dual categorization of scientists according to their roles might reveal two groups that could be labeled "fact gatherers" and "synthesizers." The overwhelming number of scientists are fact gatherers -- the real laborers of the trade. The synthesizers are widely recognized as especially skilled, with an ability to view a broad perspective, tying together the tiny bits and pieces contributed by hundreds of workers. It is the synthesizers who are able to see major threads and then formulate the broad principles of a science. They are a rare breed and only a handful can be listed as active in a field at any given time. Two of

Synthesizers formulate the broad principles of a science.

history's most eminent biologists, Mendel and Darwin, may serve as examples of the "fact gatherer" and the "synthesizer."

The theories of heredity and evolution were proposed to the scientific world in the mid-1800s in Europe. While these theories were tentatively based on small amounts of evidence at the time, they have both been well supported by a great many observations since then. Data supporting the theories of heredity and evolution would have been mutually supportive at the time, but their discoverers were apparently unaware of, or uninterested in, one another's work.
The backgrounds and training of Darwin and Mendel were very different, and, partly as a result, the circumstances surrounding their discoveries were quite different.

Charles Darwin was born into an aristocratic English family. Both his father and grandfather were respected physicians, while his mother was a member of the Wedgewood family (of pottery fame). He was groomed to be a medical doctor also, but was notably uninterested in the profession. Furthermore, in his first year at Edinburgh, he ran from a surgical demonstration, appalled at the sight. His university education was subsequently completed at Cambridge in studies for the ministry. While at Cambridge he developed an interest in nature studies under the influence of Professor John Henslow. As a result of this interest and the connections of Henslow, he was steered away from a career as a small country church parson.

Shortly after graduation from Cambridge, he accepted a non-paying position as naturalist aboard the H.M.S. Beagle on a five-year trip around the world. He left England as a novice, but returned an accomplished naturalist. Somewhere along the way he also made the subtle change from naturalist to scientist. For several years after his return, he continued to catalog and identify his specimens in the style of a naturalist, but fermenting in his mind was the momentous theory of evolution.

Gregor Mendel, in contrast, was born into the family of a peasant farmer in what is now Czechoslovakia. There were no great expectations for a professional career in his case, but he did show exceptional aptitude in his early schooling and thus went on to further education along the only route open to him -- the priesthood. Where Darwin failed to become a minister, Mendel succeeded, but his intellectual attributes led him to a life of teaching, rather than the pastoral duties of most priests. In a fashion reminiscent of Darwin's revulsion at surgery, Mendel was repelled by the sickroom and deathbed duties common to clerics.

Both Darwin and Mendel showed great curiosity about natural phenomena; in fact, their curiosity was clearly the driving force in their selection of careers. In specific aptitudes, they were quite different, but in a general way they both showed the mental ability we might expect of scientists capable of understanding significant theories. Their minds filled with well-organized information, they were capable of analyzing carefully, using their intuition to establish important facts, while providing a well-thought-out explanation.

Darwin's interest and aptitude were specifically in the area of biological observations. As a naturalist, he was a collector of immense numbers of specimens of different kinds of organisms. Astute at identifying slight differences and subtle relationships, he was able to see the significance of changing forms through time. Mendel, on the other hand, had a bent for mathematics and physics, in spite of his extensive background in practical biology on the farm. He was able to apply numerical analysis to living things in an unusual fashion.

An interesting and often overlooked aspect of both men's careers is that the general source of their ideas is probably essentially the same. The facts which they revealed are credited to them, but the intellectual atmosphere of the time provided the material that influenced both of them.

The idea of changing life through vast expanses of time on the planet had been proposed by many before Darwin. In many ways it was unacceptable, contrary as it appeared to be to the Biblical story of creation. Even those scientists who could reject their prior teachings as weakly grounded, in fact, could find no sound scientific hypotheses about the mechanism to lend credence to the idea. Neither were experiments possible nor observations solid enough to support it.
Past Teaching and childhood beliefs are difficult to question . . .

While young scientists are characteristically in a hurry to complete and publish their work, both Darwin and Mendel were very restrained. Both were painstaking, careful workers. Mendel spent seven years on his experiments before publishing in an obscure journal, and then he never pushed to gain acceptance for his ideas. As a result, his instant oblivion and his great discoveries lay unrecognized for thirty-four years, until they were independently rediscovered in 1900 by three biologists: Hugo de Vries in Holland, Erich von Tschermak in Austria, and Carl Correns in Germany.

Could his failure to impress the world have been due to his mathematical orientation? Was his work too abstract for a biological audience? Darwin's work was more concrete -- it implied that humans were related to monkeys and it caused quite a splash.

Darwin was even more reserved in his approach to publishing his ideas. By 1838, just three years after the Beagle trip, he had established the rudiments of the theory of natural selection in his mind and could cite convincing evidence in its support. However, he did not commit it to writing for
at least two years and then he set down only a sketchy outline. Over the years, he continued to add a huge amount of supporting evidence and expanded the draft of his treatise. He wrote the first draft of somewhat more than two hundred pages in 1842. Fearful of the consequences of its publication, he deposited a sum of money with his wife for its posthumous publication. Darwin’s study might not have been published at all if it had not been for one of those unusual coincidences of intellectual activity. In 1858, twenty years after the idea first came to Darwin, Alfred Wallace, another widely travelled naturalist, sent a brief paper to Darwin for review. In it he outlined exactly the same theory of natural selection as Darwin was proposing. This prompted immediate joint publication by Darwin and Wallace. As was the case with Mendel’s work, the joint paper caused very little stir. In the following year, after intensive work to shorten and finish the writing he had started in 1842, Darwin published The Origin of Species by Means of Natural Selection. Immediate and widespread controversy was the result, and the debate continues today in many quarters.

In the final analysis, Darwin and Mendel may exemplify that rebellious trait that is one of the last to develop in the young scientist. In truth, some never cross this last hurdle. It is usually possible to accept the uncomfortable view that all scientific facts and principles are mutable, even though such acceptance often arrives late in a career. Past teaching and childhood beliefs are difficult to question, however, and it may be impossible to recognize their source as superstitions. Darwin and Mendel did not make the turn totally gracefully nor without creating concerns among those around them. Mendel’s work was essentially noncontroversial, although there is some feeling that the hierarchy in the Augustinian order were concerned about his research topics. Had the significance of his work been more widely recognized, trouble might have developed. Mendel hid himself among his administrative duties as Abbot of the Monastery at Brno. Upon his death, his successor burned all his research records. Likewise, Darwin remained almost a recluse in his home in Kent in a state of ill health that very possibly was hypochondria. Just as he had no stomach for surgery, he never became comfortable with his role in the creation controversy.

Contemporary scientists have been known to complain that all of the easy work has been done and that there is little hope for significant discoveries. And yet great advances and astounding phenomena are announced regularly. There is no less curiosity than in the time of Darwin and Mendel. Neither of these great thinkers set out to make a revolutionary study. Both were careful, deliberate masters of observation and analysis. Both wanted to be correct. Clearly both thought it was more important to be knowledgeable than it was to be thought of as knowledgeable. Among the legions of people contributing ideas and information to scientific studies today, there are surely unrecognized persons whose work will stand out for its great significance in the future.

Dr. James Brennan is chairman of Biological Sciences. He has a B.S. and an M.S. from Virginia Polytechnic Institute and a Ph.D. from the University of Maryland. Since his arrival at Bridgewater in 1961, his primary teaching responsibilities have been in cytology, electron microscopy, genetics and human heredity. His research interests have centered around problems of cellular form and development in plant tissues. The projected date of publication of his new text for nonbiology majors, Patterns of Human Heredity (Prentice-Hall), is August 1984.
Cardinal John Henry Newman in the spring of 1852 delivered a series of lectures, eventually published as *The Idea of a University*, which argued against those who thought that education should be useful. These proponents of utility maintained "that Education should be confined to some particular and narrow end and should issue in some definite work" -- a view, Newman observed, which they "seemed to have thought . . . needed but to be proclaimed . . . to be embraced." Were Newman here today he would soon see that the issues troubling him trouble us. To be sure, we face now new slogans, crying not only for "utility" but, a decade ago, for "relevance" and, today, for "jobs." Yet the questions are much the same, focusing on whether a college education should guarantee the immediate results of a specific product.

Newman's reply to the proclaimers of utility (or relevance or jobs) was, first, that education aimed for something far more important, and second, that its aim was ultimately more useful and relevant than any specific product. For the aim of a college education was nothing less than *enlargement of mind* -- in his words, the power of viewing many things at once as one whole, of referring them severally to their true place in the universal system, of understanding their respective values, and determining their mutual dependence (VI, 6).

The value of this disposition of mind, Newman charged, far transcended any training for a specific function. For a person who has attained such an enlargement of mind "will be placed in that state of intellect in which he can take up any one of the . . . callings" and so be better equipped to deal creatively and insightfully with his or her development as well as with the changes and variety of society (VII, 6).

Nevertheless, granting that Newman's reply has been influential and sounds pretty, is it true? Remember that when Newman delivered his lectures the word "science" had been coined just a decade before, Newton and his non-relativistic views on the independence of space and time reigned as absolute monarchs, mathematics was still unclear about alternative geometries and had not yet dreamed of the paradoxes of infinite sets, Darwin's *Origin of Species* was seven years from publication, economics had established itself as a distinct discipline less than a century before, psychology was almost four decades from being seen as an independent inquiry, and Newman himself felt no reservation in addressing his audience solely and repeatedly as "Gentlemen." Clearly, gentlepeople, we have come a long way. So, as pretty and apt as it sounds, is Newman's view true? Is it the case that one will or should learn at the College how to refer things to their true places in the universal system?

I believe it is obvious that we cannot answer that question unless we go to the disciplines -- say, How can we understand human activity?

One obvious discipline to help us answer this question is psychology. There we will read, say, B.F. Skinner, who holds that our desires and feelings cannot explain our behavior. For, Skinner argues, a person never does anything because he or she wants to do it: wanting, feeling, desiring, and all such mental acts are the mere shadows of the true causes. This is so, according to Skinner, because a person is best understood in behavioral terms -- as a "complex repertoire of behavior appropriate to a given set of contingencies." And what determines whether a behavior pattern is appropriate is whether it has or tends to have, survival value. Hence the true causes must be looked for within an environment defined by an evolutionary framework. Accordingly, why one does what one does must be explained, says Skinner, within an evolutionary-behavioral model.

So now, after reading Skinner, can we say that we have one piece in the "Universal System" of knowledge? Can we say that we have heard from psychology? We can, provided we read only Skinner. But turn to another influential psychologist, say, Phillip Teitelbaum, and we read that Skinner is right in telling us that we do not act from feelings but is wrong in telling us to look to the behavioral environment for the true causes. Not there but the central nervous system is the source of explanation of...
human behavior. In Teitelbaum's words:

The nervous system is what makes us tick, so we take it apart. Chop it into smaller chunks and our behavior also decomposes into smaller fragments. Intergrate the units of the nervous system and you synthesize behavior.

What one does, then, must ultimately be accounted for in terms of the central nervous system. But do not stop with these two thinkers. Continue and read, say, Carl Rogers, who views a person as a "self-actualizing process of becoming," and who consequently insists that desires and hopes and the like must be considered in understanding people. For these are central to the matrix of self-actualization: to exclude them would be to omit what is most significant about us.

It seems, then, even on the basis of this brief look, that the question, "What does psychology tell us?" is ludicrous, for psychology does not tell us any one thing. It is not a monolithic discipline. Rather sharp disagreement abounds over the most fundamental matters. In our glimpse we saw this disagreement focus on where to look for an explanation of human activity: What are "the facts" -- our behavior, neurological organization, purposes and plans? Yet implicit within this question lie a number of others, concerning the very aim of psychology and the place and nature of values and humanity in it.

If we had time we could observe that similar disagreements exist throughout the social sciences. Like psychology they are all deeply divided, and within themselves, concerning (1) their aim -- description, prescription, explanation, revolution? (2) their method -- prediction and control, valuational analysis, empathic understanding, dialectical analysis? (3) and even their topic -- just what is society, a person, politics, economics anyway? But for the sake of time let us put this more extended examination aside, and turn to the physical sciences.

There, too, unanimity eludes us: quasars, red shifts, the myriad small particles of physics, relativity theory, the status of quantum mechanics -- all leave room for profound and widespread disagreement. However, what I wish instead to focus on, in this brief excursion into the physical sciences, is their historical nature. For even when we find general agreement in the physical sciences, the content of the agreement has changed radically from epoch to epoch. For instance, if we were able to and did transport some physicists of one to two millenia ago to the present and asked them to explain human behavior, they would dismiss the question as absurd for a physicist to answer. For Aristotle had taught them that such
questions belong to the theory of deliberation and not the theory of the heavens. Yet were we to question physicists of one to three centuries ago they would probably be more willing to reply. Indeed they might even refer us to that sixteenth century thinker Laplace, who reasoned that an "intelligence, who for a given instant should be acquainted with all the forces ... and with the ... positions of the entities," and who also knew their laws, would know all. "Nothing would be uncertain for him; the future as well as the past would be present to his eyes." Hence human action for our physicist of one to three centuries ago is fully explicable and predictable in terms of (1) the positions and forces of the physical bodies at (2) a given instant of the universe -- a view which we have come to call classical determinism.

But now, if we ask physicists of today our question, we would find them probably to be one of two types -- a "believer" or a "sceptic." Both would reject in toto the classical thesis of determinism but for different reasons. The believers would reject the deterministic thesis on two grounds: First, they would point out that Einstein showed that there is no "given instant" to the universe as classical determinism held, for time is a local phenomenon, intertwined with acceleration and mass. Hence, contrary to classical determinism, there is no "universal moment" common to all things and thus there is no possibility of determining the nature of all things at such a "moment." Second, the classical determinist view of a thing as having a definite force and position or "nature" must be dismissed, for quantum mechanics has shown that there is a real indeterminacy in regard to particles having both specific force and position. Hence human behavior, if understood as influenced by the micro-entities of quantum mechanics, could not be clearly predicted and at best might be seen within the matrices of probability functions. The sceptical physicists, however, would reply that what is crucial in science is not the general agreement on the current position but that the current position has always been rejected. Consequently, there is no reason to believe that the position agreed on today will be the final position, or indeed, that there will ever be a final position. And if some wish, as our believing physicists wish, to assume that physics in particular and science in general "progress" to the real, they must give a reason for this faith. For since when does predictive power entail an understanding of the real? That we are able to control more does not mean we know more. To think so is to confuse knowledge with magic. Rather, our sceptical physicist concludes, physics does not speak of the real but instead provides us with convenient mathematical tools, which we label formulae and theories, and which organize our experiences. Science, like any tool, is neither true nor false but useful or not useful.

"But what of the scientific method?" someone might ask here. "Isn't the scientific method a point of agreement on which we can build?" Well, to answer this question we must critically examine "the method" -- a difficult task, since for some to criticize the method is to criticize the divine. But let us start out by recalling what the scientific method is popularly held to be -- a procedure in which we are to (1) observe the facts, (2) construct an explanatory hypothesis, (3) deduce (preferably novel) predictions from the hypothesis, (4) compare what is predicted with what happens, and (5) determine whether the hypothesis is confirmed, refuted, or requires revision.

However, we shall find pronounced disagreement here as well. To begin with, we have already touched on some of the difficulties in applying this method to the social sciences: How can we observe "the facts" when what is in question is whether people can be understood in this way? While physics and chemistry do not have the second problem, they do have the first -- especially when it comes to the frontiers of their disciplines. Moreover, when they do not have the problem of what "the facts" are, when they do by and large enjoy agreement as to what counts as evidence, first, we will have to recall that these "facts" change from historical epoch to epoch, and second, we must realize that this agreement leads them not to teach the so-called scientific method. For, recall how many of the answers are in the back of the book. Yet how can there be answers, when the method tells us to reject these answers that are not personally validated by us? Or consider how you did or will approach a laboratory problem. Say you are told that a microscope should reveal red circles on this slide. But, alas, no matter how hard you look, you fail to see the red circles. You adjust and readjust the knobs. You call a friend in to adjust and readjust the knobs. But no red circles. The
only red circles are those in your eyes from pressing so hard against the microscope; and you can’t see those either, since you have no mirror. So then, do you conclude that the theory is false? -- that it is to be dismissed? By no means. You might be dismissed, by the professor, but not the theory. What these reminders indicate is that it is not the theory that is being tested here but the student -- as is seen by how you panic when your answers don’t agree with those in “the back of the book” or when you don’t see the red circles. Hence, it seems quite misleading to insist that the scientific theory is false? n that it is to be dismissed? by the professor, but not the method as just stated is what we learn and master in science courses. We learn to compute right answers, to see red circles, that science is arbitrary or subjective in the way a personal decision -- say one’s preference for chocolate ice cream -- is subjective. But it is to say that the standards and canons of science are determined from within the practice, which itself is an historical endeavor and so is continually open and in flux. Consequently, we can no more look to “the method” of science as providing us with that touchstone on which we can all agree than we can look to “the method” of ethics or religion. All of these endeavors are cultural and so temporal phenomena. Hence their methods will not only vary from epoch to epoch but also will be open to dramatically different interpretations.

\[\text{... the College offers no invitation to see how everything falls into its place but rather offers an invitation to find out where the disagreements are concerning how things fit into their places, and indeed whether there are things to fit and places to fit into.}\]

and to measure carefully; but we do not learn to criticize the current theory.

The justification for such an approach is that it is extraordinarily effective and no one has come up with a better one. In the words of one of the major philosophers of science today, Thomas Kuhn:

Without wishing to defend the excessive lengths to which this type of education has been occasionally carried, one cannot help but notice that in general it has been immensely effective. Of course, it is a narrow and rigid education, probably more so than any other except perhaps in orthodox theology. But for normal scientific work... within the tradition that the textbooks define, the scientist is almost perfectly equipped.

The intent of an education in science, accordingly, is for the student to attain to the levels and standards of the current theory. Hence education in the physical sciences is not much a matter of criticism as it is a matter of initiation -- initiation into the formulas, facts, and methods employed at that time in the discipline. In this sense of introducing the student into a total system of techniques, strategies and standards, science is "subjective." This is not to say that science is arbitrary or subjective in the way a personal decision -- say one’s preference for chocolate ice cream -- is subjective. But it is to say that the standards and canons of science are determined from within the practice, which itself is an historical endeavor and so is continually open and in flux. Consequently, we can no more look to “the method” of science as providing us with that touchstone on which we can all agree than we can look to “the method” of ethics or religion. All of these endeavors are cultural and so temporal phenomena. Hence their methods will not only vary from epoch to epoch but also will be open to dramatically different interpretations.

In addition to being divided within themselves, moreover, the academic disciplines are also divided from one another in part by ignorance and at times in part by profound differences concerning the status of the humanities and humanity’s place in nature.

That the disciplines are divided from one another by ignorance is no news. C. P. Snow was saying decades ago that a scientific education is narrow. He observes that Charles Dickens, who among novelists is considered as all too obvious, is too often viewed by scientists as though “he were an extraordinarily esoteric, tangled and dubiously rewarding writer... the type specimen of literary incomprehensibility. But Snow does not stop here. He goes on to ask:

But what of the other side? They are impoverished too -- perhaps more seriously because they are vainer about it. They still like to pretend that the traditional culture is the whole of ‘culture’ as though the natural order didn’t exist. (p. 10)

What we are left with, says Snow, is at least two cultures, the literary and the scientific, unable to appreciate or understand each other. And in an era when all of the disciplines are especially needed to face the troubles of the world, the “degree of incomprehension on both sides is the kind of joke which has gone sour.” (p. 18). A mere scientific education is narrow, yes, but so is a mere humanities education.

But for many, and by now no surprise, Snow does not go far enough. It is not that we are separated by ignorance but that the literary culture is not worth knowing. Francis Crick, who with James Watson worked out a structure for the DNA molecule, argues that Snow’s mistake was to “underestimate the differences” between the two cultures:

The old or literary culture, which was originally based on Christian values, is clearly dying, whereas the new culture, the scientific one, based on scientific values, is still in an early age of development... It is not possible to see one’s way clearly in the modern world unless one grasps this division between these two cultures and the fact that one is slowly dying and the other, although primitive, is bursting into life.

For Crick, then, we have only one legitimate culture, the scientific one, with the residue as decadence. But such a divisive claim! Why does he make it? He does so because he believes that the “ultimate aim of the modern movement of biology is in fact to explain all biology (and eventually all human life) in terms of physics and chemistry,” (p. 10). That is, the model Crick has of scientific understanding is that of a ladder, where the happenings in large groups -- currently studied by sociology, economics, and the like -- will eventually be explained by (the lower rung of) psychology, the study of individual behavior, which in turn will be reduced to (the next rung of the ladder) physiology, the study of the nervous system, which in its turn will be reduced to...
biology, the study of life systems, and then to chemistry and, finally, to (the bottom and basic rung) physics. In contrast to the sceptical understanding of science, which views such a ladder of knowledge as at best a possibility for exciting but ultimately curious correlations, Crick sees the ladder as a reality not yet fully borne out but nevertheless providing a justification for holding that the source of all legitimate explanations and values resides only in science and ultimately in physics. Accordingly, the literary culture, in pretending that it is a source of insight and value, is playing the fool's role.

Of course the "other" culture is hardly quiet before such an onslaught. But what is important for us to note here is that the discussion continues. But to what end? -- Just that, perhaps by now obviously enough, is what cannot be said. For where such disagreements exist, there "knowledge," in Newman's sense, does not. But this result should not lead us to deplore the state of "knowledge." Rather it should challenge us to reconceive it: To grasp the human activities of learning and understanding, we must no longer look, as Newman in the nineteenth century did, to those calm areas of agreement and unity, but instead we must seek out the turbulence of controversy. For as we have seen repeatedly, understanding is an historical happening. It is not a list of eternal truths but a groping for the precise articulation and the sustained analysis of those issues that divide us. To learn, as Newman so clearly saw, is an enlargement of mind. But it is not, as he believed, the awareness of how things fit into "their true place in the universal system." Rather enlargement of mind involves seeing the issues which divide us, and understanding these issues as cultural -- meeting our particular needs at this particular time; historical -- developing and emerging in time; multi-faceted -- embracing many fields in bewildering complexity; ongoing -- of immediate concern and challenge; and open -- forever to be pursued.

Enlargement of mind, thus, does not involve the serene quiet of mystic contemplation but the dynamic and unceasing quest for sense in life. It does not result in "products" or believers, who possess the One Truth, but rather fosters thinkers who have a profound tolerance for ambiguity and uncertainty, and yet who have as well an enduring commitment to some sort of "sense making" amidst the buzzin' bloomin' confusion.

Consequently, the College offers no invitation to see how everything fits into its place but rather offers an invitation to find out where the disagreements are concerning how things fit into their places, and indeed whether there are things to fit and places to fit into. This invitation, however, must not be misconstrued. It is not an invitation to become an instant colleague, one able immediately to contribute creative ideas to the hurly burly of the controversies. First must be mastered the assumptions and views leading to and allowing us to state the issues; and such mastery involves the hard work of memorizing, problem-solving, exercises in writing essays, and the like. Nor is it an invitation to become a fact monger, to memorize all the material in grade grabber fashion, yet to fail in the end to see the point of the mastery. For the point is none other than freeing the student from the ignorance of the issues so that he or she can become engaged in the cultural deliberation regarding them. Nor is it an invitation to be a discipline mole, to master the material and see the issues but only within the confines of one or two disciplines. Newman himself worried about this "danger of being absorbed and narrowed by a discipline," (VII, 6); for to be so narrowed is to lack a sense of the sweep of the controversies within even one's own discipline. Nor again is it an invitation to become a sampler, to hop arbitrarily from one discipline to another. As Newman saw, that would be to make "the error of distracting and enfeebling the mind by an unmeaning profusion of subjects; of implying that a smattering in a dozen branches of study is not shallowness, which it is, but enlargement, which it is not," (VI, 8). Nor finally it is an invitation to be a collector of recipes -- to seek for the "practical" directives from the various disciplines. For a recipe, even a collection of them, lacks all sense of the vagueness, ambiguity, and flux built into the human situation. With a recipe one can perhaps plan a dinner, but one cannot manage one's life. For the perplexity in life is that in reply to one's no trump bid one confronts an off-tackle slant.

Rather, with Newman, the College asks its students to enlarge their minds. With him it views this aim as much more significant than any particular and immediate aim -- say, learning how to run a business or become a doctor. And with him it views the achievement of this aim as something far more useful than the achievement of any specific product. For what the College seeks is not "products" -- things of dull doings -- as if a person could be confined to the mastery of facts, techniques, and recipes. Rather, the College looks for persons who are aware of themselves as having choices within a matrix of cultural issues and who recognize that these choices will often make a difference. Such agents as these will be far less likely to be taken in by any simplistic account or method and will be much more likely to meet successfully the demands of a world in flux and radical change -- where our distinctions are repeatedly blurred, our predictions at best come out only half true, our lives are ambiguous and uncertain. In this sense our education, our liberal education, alone can be useful. For in its refusal to offer the easy truth, the unambiguous "facts" and the clear "life management recipes," in its refusal to gloss over or disguise the profound disagreements underlying our pretty theories, and in all its profound insistence on the subtle interconnectedness of our ideas and our lives, the liberal education more than any other kind of study, makes us aware of "the real world." Indeed it makes us free -- the root meaning of "liberal" -- by making us realize that the real world is an open question. Welcome to the College.

... the perplexity of life is that in response to one's no trump bid one confronts an off-tackle slant.

Edward W. James, Associate Professor of Philosophy, has a number of articles on philosophy of logic, philosophy of science, and ethics in various philosophical journals and anthologies. He is currently completing a book on ethical pluralism, its sources and standards.
NEWTON, MA, July 22 -- Philippine opposition leader Benigno S. Aquino, after his passport was withheld by the Philippine government. The Philippine government claimed Aquino could be assassinated if he returned to the Philippines.

NEWTON, MA., August 4 -- Aquino packs a carton of books in his temporary home in Newton, MA, in preparation for his ill-fated return trip to the Philippines.

Ren Norton, on assignment for Associated Press, met with Philippine opposition leader Benigno Aquino and his family on a number of occasions during the summer of 1983. Ren was also present at the Aquino home in Newton, MA, when the news arrived from Manila about the tragic assassination. The Bridgewater Review is pleased to present Ren Norton’s photographs of Aquino and his family. Ren Norton is a 1977 graduate of Bridgewater State College and a staff photographer for the Boston Herald.
NEWTON, MA, August 22 -- Corazon C. Aquino, right, widow of assassinated Philippine opposition leader Benigno S. Aquino Jr., is supported by her daughter Kristina as they greet guests in their Newton home.

NEWTON, MA., August 22 -- Mrs. Aquino wipes away a tear while listening to a tribute to her husband.
Bruno Bettelheim and Karen Zelan are concerned because so many children fail to learn to read as well as they could. Their book, *On Learning to Read: The Child's Fascination with Meaning*, ascribes much of the blame for this state of affairs to destructive teaching methods and dull repetitious reading books that are devoid of meaning. They argue strongly for the importance of meaning and would like to see children encountering literature right from the beginning of their experiences with the printed word.

Although all of this has been said before, there is something new and valuable to be gained from the ideas presented in this book. Bettelheim and Zelan put forth a theory about the cause of children's oral reading errors and report on a study of the influence that the teacher's reaction can have on a child's misreadings. The development of their theory is an interesting story in itself.

For many years Bruno Bettelheim was the director of the University of Chicago's Orthogenic School, which served emotionally disturbed children with severe learning problems. As Bettelheim observed these children overcome their handicaps in a program that used therapeutic and educational methods based on psychoanalytic thinking, he speculated about the contribution a psychoanalytically oriented approach might make to the understanding of the reading problems of normal children.

Bettelheim theorized that many of children's oral reading errors are not the result of lack of attention or inability to decode words or understand the text. Children make mistakes because they understand the text all too well and reject it as empty and meaningless or because they are subconsciously occupied with thoughts that account for the misreading. Thus all children's misreadings are meaningful and occur for what seem to the child valid if not always conscious reasons.

To test the theory, Bettelheim, Zelan and their associates carried out a four-year study of the reading behavior of some three hundred children in the primary classrooms of eight public and private schools in California and Massachusetts. They went into these classrooms and observed the interaction that took place when a child read with a teacher. They then talked with the child about his thoughts and feelings concerning the material he had just read. They also talked with the teacher. As the study progressed, they themselves read with children.

Their approach was to involve the child in a casual conversation about what a misreading conveyed to the listener within the context of the story as printed. Neither accepting the misreading without comment nor correcting it, the listener treated the misreading as an interesting statement about which he wanted to learn more so far as the child's conscious understanding of the matter went.

The book contains a number of descriptions of how children reacted to this approach. In most cases, the child spontaneously corrected the misreading, often rereading the part of the text on his own initiative. Bettelheim and Zelan see these reactions as supporting their theory about the causes of misreadings, and it is precisely here that their ideas are likely to have the greatest impact on the teaching of reading.

For several generations, teachers were trained to analyze children's oral reading for clues to deficiencies in skills development. Oral reading errors were taken as evidence of a limited reading vocabulary, lack of fluency, inadequate phonics ability, etc. Since the late Sixties, there has been a trend to modify this approach, with teachers encouraged to see in oral reader mistakes evidence of the strategies the reader is using and the oral language and knowledge background he brings to the reading task. Miscues are classified according to graphic similarities and syntactic and semantic acceptability.

Now Bettelheim proposes that teachers treat all misreadings as subjectively meaningful on some level and react positively in a way that suggests to the child that his reading is being taken seriously. When the child is supported in what he is trying to do (find acceptable meaning in what he is reading), he will often then be able to move in the direction the teacher wants him to go (read the text the way it is printed).

On Learning to Read suffers from one minor weakness. The authors vent so much negative feeling toward reading methods and basic readers that communication with those most responsible for developing literacy may be jeopardized. Few teachers will recognize themselves in the statements about their single-minded concentration on word recognition at the expense of any attention to meaning or their tendency to restrict children's spontaneous reactions to what they are reading.

A more serious flaw is the failure of the authors to validate their advocacy of using literature right from the beginning of reading instruction. They never do come to grips with the question of how the beginning reader can be taught to recognize words. Bettelheim may see the emphasis on the technical aspects of learning to read as detrimental and often destructive of the child's ability to enjoy literature, but his unsubstantiated references to children who learn to read without training in decoding or other skills and to preschool children who teach themselves to read do not constitute a viable alternative to the skills approach to beginning reading.

Bruno Bettelheim and Karen Zelan set out to suggest procedures based on psychoanalytic insights that facilitate learning to read. Their success in accomplishing their stated purpose has resulted in a major contribution to our understanding of the problems children encounter in acquiring literacy.

John Deasy
Department of Elementary and Early Childhood Education
The Soul of a New Machine
by Tracy Kidder

$13.95

This lucidly written description of how a small group of computer engineers at Data General created MV/8000, a powerful new minicomputer, is on the whole a very entertaining and readable story. No prior computer knowledge is assumed; most of what is needed is introduced in a readily understandable way. Kidder’s story begins at Data General. Probably unaware of the market demand for 32-bit superminicomputers, executives at Data General are shocked to watch DEC’s VAX computer go to market, to hear it described as ‘a breakthrough’ and not have a brand-new machine of their own to show off. Finally, they decided to build one within a year; it was nicknamed “Eagle.”

The book introduced us to a group of brilliant and unusual computer engineers working together under extreme pressure, frequently for eighty hours per week without overtime pay. Many of them claimed that they did not work for the money, but for the opportunity to build a new machine, an opportunity which was seldom presented in a big company. The Eagle’s team leader, Tom West, explains what kept the professionals going. “Pinball,” he said. “You win one game, you get to play another. You win with this machine, you get to build the next one.”

Time-sharing created several problems for the computer industry. One was the problem of protecting the stored information. Users of a time-sharing system could inadvertently alter the content of the host computer’s memory and in this way destroy valuable data and foul up system software. As Mr. Kidder explains, the “rings” system which was used by both VAX and Eagle to protect stored information, can be compared to an Army encampment in which all the tents are arranged in several concentric rings. Because “inner circles are able to reference anything in the circles around them but not inside them,” information remains confidential.

Another problem created by time-sharing is the shortage of storage space. Many people may want to use the computer at the same time, but the amount of information it can store is limited. To solve this problem, the Data General engineers used a virtual storage system, which creates a storage space much larger than that available in the primary storage. One of the most common methods of implementing virtual storage is paging. In this approach, the program is like a book which is stored in the virtual memory; individual pages can be brought into the main memory of the computer one at a time when needed. Mr. Kidder illustrates the idea of “paging.” He describes a program called “FOOBAR” which has been running for a while when IP (Instructional Processor) discovers that it doesn’t have the next instruction in its own memory; he next shows how the “page fault system” works to bring the next block of instructions in program “FOOBAR” into the memory system.

Mr. Kidder makes it very clear why it is so important to get all the bugs out of a new computer. But he also mentions that most new computer systems are found to have...
Book Reviews Continued

some bugs after their delivery; most of the time, although these bugs do not create a disaster, they are expensive to fix. In his chapter on “The Case of the Missing NAND Gate” Mr. Kidder demonstrated how the Eagle’s team traced one bug and established a solution by adding a “NAND” gate to serve as a delay to the Instruction Processor. He made this complicated debugging process so easy to follow that even somebody knowing very little about this computer could understand.

The Eagle’s team was divided into two groups, one of them called “Hardyboys” to work on the hardware and the other one “Microkids” to work on microcodes. Describing how each of the two groups did their jobs, Kidder gives the reader a good picture of the main components of a computer system. He also points out that without software, a computer is useless. IBM’s separation of software from hardware in the early 1970s led to a dramatic change in the computer industry, fostering the development of better quality software. In the end, software engineering has become one of the main branches in computer science.

Zon-I Chang
Associate Professor of Mathematics
and Computer Science

The Last American Frontier
by Robert B. Reich

$16.60

There is a growing perception that the American economy is undergoing a major transformation.

No longer can America’s economic policy be determined by the systematic exploitation of staggering resources. The realities of economic growth here and abroad have changed. There is now an awareness that the world, at least from an economic viewpoint, is a very small place.

Beginning in the late 1960s, America’s competitive advantage in the high-volume, mass-production industries gradually moved to Japan, Western Europe and less-developed nations with lower labor costs and better accessibility to raw materials. This transformation continued through the 1970s and the 1980s. A two-year study published in 1982 in the *Harvard Business Review* of a cross section of 195 U.S. industrial companies indicated the magnitude of the problem: fifty-two percent of the companies studied reported annual gains in production of less than five percent, another nineteen percent reported gains of five percent and ten percent; only three percent had gains exceeding ten percent; and twenty-five percent did not even know what their productivity performance had been. Worse still, because roughly half the companies did not correct information for inflation, these figures did not show that thirty-two percent of the companies actually experienced declines in productivity.

This decreased production has resulted in a great deal of discussion about its cause, effects and possible solutions. It has also led to the coining of the phrase “industrial policy.”

The Last American Frontier by Professor Robert B. Reich is partly a result and partly a catalyst of this focus on industrial policy. Reich, who teaches Business and Public Policy at the Kennedy School of Government at Harvard University, was formerly the Director of Policy Planning for the Federal Trade Commission.

His book examines the origins and history of this economic transformation as well as his proposed solutions to the problem of declining productivity.

In his opinion, the problem can be traced to the American belief that there are two sets of mutually exclusive values, one relating to government and politics, the other to business and economics. Since the close of the frontier, these values have competed for ideological dominance, producing pendulum-like vacillation in

Many of the businesses that comprised the backbone of the American economy during the era of management are in serious financial difficulty. . .

The early years of this era were characterized by tremendous economic growth, resulting from the combining of British and American technology, high-volume production and immigrant labor. The latter years of this era reflected a decrease in worker output due to a failure of American industry to organize itself. It was during this era that the issue of competing values was initially raised.

He defines the next period, 1920 to 1970, as the “era of management.” This era was characterized by the use of organizations designed to integrate sets of simple repetitive tasks as well as the creation of a bureaucracy in government to facilitate this objective. By applying these management techniques, Reich says, America became the leading economic force in the world primarily because of its dominance in manufacturing of heavy goods, automobiles, steel, home appliances, rubber products and chemicals. New wealth was created by this high-volume standardized production which fueled further success, as rising real wages and a developing consumption-oriented middle-class spawned mass markets for standardized goods.

In Reich’s opinion, the next period begins in 1970 and is continuing today. He terms it a time of “impasse” during which American productivity, corporate profits and the standard of living has declined. Many of the businesses that comprised the backbone of the American economy during the “era of management” are in serious financial
importance of maintaining a community of skills in relationships within the work force so that economic downturns are borne primarily by stockholders and government supported banks, rather than by the employees themselves. MITI spends nearly one-fourth of its budget subsidizing small businesses so that when workers are laid off they find new jobs, thus preserving their skills, pride and motivation.

Finally, Reich's conclusion calls for political institutions which are as versatile as the so-called flexible systems of production. These institutions must be less concerned with making correct decisions than with making correctable ones; less obsessed with avoiding error than with detecting and correcting for error; more devoted to responding to changing conditions and encouraging new enterprises than to stabilizing the environment for old enterprises. If we are to succeed according to Reich, the instruments for implementing active adjustment will not be the blunt tools of historic preservation -- broad-gauge tariffs, desperate corporate bailouts, and macroeconomics -- but more supple tools like restructuring agreements, training and employment vouchers, regional development funds and tax and financial codes that guide and accelerate market forces while discouraging paper entrepreneurialism.

Kevin Wall
Assistant Professor
Management Science
Burren

That is their name
for this bitter rock land.

Before us is a weaving
narrow road,
to either side
the Burren.
The desolation grows inside us.
We hardly speak.
A lone
fox runs zig zag
across the white rocks.

There is nowhere to hide.

High up in the hills
unseen orchids
plunge their greedy roots deep
between the rock
and blaze bright flowers
that run for miles
in thin, crazy lines.

Lynn R. Feingold

Connemara Landscape

A man alone
in the mist
turns peat bricks
one after another
off the wet banking.
His boot on the dull spade
he moves in a dream rhythm
that we cannot be a part of.
He digs alone
in the soaked peat field
one after another
they turn off the spade
one after another
they roll to the heap.

Lynn R. Feingold

Lynn Richmond Feingold (formerly Lynn Haffner) is a 1982 graduate of Bridgewater State College. While at Bridgewater, Lynn was the editor of the Arts Magazine. Lynn is currently employed at the Howard Johnson Company in Braintree and is active on the Stoughton Arts Council.
In May, 1980 the Ideal Toy Company launched its newest offering, Rubik's Cube, at a party in Hollywood, hosted by Zsa-Zsa Gabor and Solomon W. Golomb. Of course Gabor, like the cube, is a Hungarian product but who is Golomb? Well, he is a mathematician at the University of Southern California and an expert in number theory, combinatorics, abstract algebra and coding theory.

Does the conjunction of a movie star and a mathematician seem strange? Can mathematics entertain and can play be serious? Indeed it can and the cube is only the latest (and possibly the best) manifestation of recreational mathematics.

A cavil. Let me say that one does not need to know mathematics in order to solve the cube or the appreciate it as a beautifully constructed mechanism. Nor does knowing the mathematics of the cube necessarily make one a cube virtuoso, able to restore the cube in less than a minute.

However, the cube moves as it does and the small cubelets can occupy just the spaces they do according to a precise set of rules governing patterns and their rearrangements. The mathematics of pattern rearrangement or permutations of objects is called group theory, a branch of abstract algebra.

Rubik invented the cube as an aid in teaching his students three-dimensional thinking. In that effort he was marvelously successful. But now the cube has become the darling of algebraists, who use it to teach group theory to their students.

Curiously, previous generations toyed with the device which is a direct precursor of Rubik's cube, and mathematicians have seized upon it as well. This was an invention of America's greatest puzzlist, Samuel Loyd, who produced and object in 1878 called the 15 puzzle. It is a four-by-four tray holding fifteen one-by-one squares (numbered 1, 2, ..., 15) that are grooved to allow any one of them to slide past an adjacent square and into an empty space. The space can be though of as an imaginary sixteenth square. The puzzle requires that one reestablish the usual serial order among the numbered squares after an initial jumbled order has been imposed. The puzzle is still available worldwide, in various forms, and, I daresay, should persist along with the cube down all the generations to come.

Let me note some comparisons.

Both Rubik's cube and Loyd's puzzle are ingeniously constructed. This gives the mechanisms themselves a beauty and harmony that appeal both to our eye and to our intellect.

The 15 puzzle had a vogue as great as the cube does today, especially in Europe. Journalists of the late nineteenth century reported that the puzzle created headaches and neuroses. Today, many of us (cubic rubes?) can report similar effects from our attempts at conquering the cube.

Both the cube and the puzzle have a mathematical description rooted in group theory. To master the toy in each case is akin to solving the underlying mathematical problem.

It's worthwhile to note that the inventions of group theory, Loyd's puzzle and Rubik's cube, occurred approximately one hundred years apart. The origins of group theory are usually traced to 1770 and the ideas of the great French mathematician Joseph Louis Lagrange. A century later, Lagrange's initial study of permutations had become a full-blown branch of mathematics: group theory. So by 1878, when Loyd produced the 15 puzzle, the mathematics was available to analyze it, which was done in an article in the fledgling American Journal of Mathematics (Volume 2, 1879).

Now the exposition of the mathematics of the cube is more complicated but still a task of group theory. Instead of numbered squares rearranged by sliding in a two-dimensional tray we have cubelets being interchanged by rotating in three-space. (A good discussion of this, accessible to the non-mathematician, is in Douglas Hofstadter's column, Metamagical Themas, in Scientific American, March 1981).

The interplay between group theory and games in general and group theorists and the cube in particular continues unabated at this writing. Let me cite one important example.

John Horton Conway, at the University of Cambridge, England, is considered to be a mathematician of the highest rank and has made significant contributions to group theory. In 1969, he discovered three so-called "sporadic simple groups" which helped to complete the largest single research effort in mathematics: the search for all finite simple groups. This work began in 1870 and ended in 1981. The final synthesis of his work, which is now going on, must be extracted from the equivalent of a research paper some five-thousand pages long. Conway is also the inventor of numerous (one can actually say infinitely many) wonderful games. He has recently co-authored winning ways (Academic Press, London, 1982) which is expected to become the standard work on combinatorial games well through the twenty-first century.

As to the cube, Conway has not only mastered it, but invented a variation of the usual play called — "three looks." Here the player inspects the cube, then holds it under a
Cultural Commentary Continued

table for more moves, brings it out a third
time for a last look and then manipulates it
for the last time under the table, finally
achieving cubical perfection.

Is this game playing spirit, native to all of
us, at the heart of mathematics? Is
mathematics a sort of game, albeit with
serious applications? I think that it is.

I am reminded of Jacob Bronowski who
considers this question in his beautiful work,
so optimistic for mankind, The Ascent of
Man. At one point Bronowski is explaining
symmetry in nature and art. He takes us to
the Alhambra, where in the baths of the
harem we see motifs of “wind-swept”
triangles in perfect hexagonal collaboration
filling the walls. He points out the color
pattern of the triangles and the three-fold
rotational symmetry it displays. Here in the
simple geometric designs the Arab artist
and mathematician are fused together. In
this way they interpreted the symmetry of
space. And then to quote Bronowski, “At
this point the non-mathematician is entitled
to ask, ‘So what? Is that what mathematics
is all about? Did Arab professors, do
modern mathematicians, spend their time
with that kind of elegant game?’ To which
the unexpected answer is -- Well, it is not a
game. It brings us face to face with
something that is hard to remember, and
that is that we live in a special kind of space --
three dimensional, flat -- and the properties
of that space are unbreakable. In asking
what operations will turn a pattern into itself
we are discovering the invisible laws that
govern our space.”

So it is that symmetry and patterning in
the real world and in art have a
mathematical expression and this
mathematics, group theory, not only serves
to describe the objects but also to reveal the
very nature of the thing and to point out
what is and is not possible in creation.

RESEARCH NOTE

A New Perspective on Revenge
and Justice in Homer

Most of us are aware that our idea of
justice comes largely from Ancient Greece.
But we might be surprised at how old Greek
justice really is. Classical Athens (490-323
B.C.), to which we owe much of our
understanding of justice, was itself heir to a
system of revenge justice that was older still
perhaps as old as the Mycenaean period
(1200-1100 B.C.). The record of this period
is sparse, and with the exception of a few
graves and ruined palaces, all that we know
of Mycenaean life is found in the oral poetry
of Homer.

Because the Mycenaens were illiterate,
the tales of the warrior kings preserved in
Homer served as storage mechanisms for
social values. Much of the behavior which
these tales idealized was aggressive and
retaliatory. Both the Iliad and the Odyssey
depict heroes who seek enormous and
violent revenge on their enemies. Achilles,
for example, kills Hector to avenge the
death of Patroklos and then mutilates his
body by dragging it unmercifully around the
walls of Troy. Odysseus returns to Ithaca
after a twenty year absence and not only
kills all one hundred and eight of Penelope’s
noble suitors but then slaughters and
mutilates his own disloyal servants.

To modern readers the severity of
revenge, the sensitivity to insult, and the
overweening concern for honor with which
these heroes are preoccupied seem
extreme, but a study of heroic behavior
shows that, while not yet the equivalent of a
justice in the modern sense, revenge was
part of a developing concept of retributive
justice based on fairness and reciprocity. To
heroes such as Achilles, Agamemnon, and
Odysseus, revenge was not only an
expression of personal anger but a matter of
necessary reciprocity and punishment
taken in behalf of the group and
accomplished according to certain rules.
This is not to say that in such a primitive
period social proprieties were always
observed, or even consistent, or that the
Homer's hero's understanding of his
motivations was clear, but a careful
examination of the explanations which the
heroes give for their actions does indicate
that revenge was a serious moral matter.

Revenge was a means of reciprocal justice
dependent on fair measure and at its best it
punished the aggressor, restored honor,
and maintained social balance. Its
importance as a moral issue in Homeric
society is indicated by attempts to control
its extremes in order to guarantee fairness.
The accounts in Homer show that revenge
was accomplished by proprieties meant to
guarantee that it be neither too lenient nor
too severe. Sometimes the Homeric hero
was tempted by more immediate
gratifications such as a large ransom to
forget the degree of punishment that
responsible revenge demanded. Twice in
the Iliad Agamemnon is forced to argue for
proper severity. In the first case Menelaos,
the aggrieved party in whose cause the
Trojan War is being fought, is about to
accept a ransom and thus spare a captive
Trojan. Agamemnon reminds his brother
that the only proper revenge is death for all
Trojans. Menelaos agrees, kills his captive,
and gives up the profit that the ransom
would have brought. In the second case
Agamemnon himself kills two Trojan boys
and foregoes the ransom of gold and
wrought iron which they have offered.

Although the separation between just
reprisal and material profit is not always
clear, both these instances in the Iliad seem
to demonstrate that proper revenge
was not a matter of personal gain and that it
required some sacrifice from the avenger as
well as from his victim.

As there were limits on clemency, there
were also safeguards against undue cruelty.
Passages in both the Iliad and the Odyssey
indicate a concern that punishment not
exceed just reciprocity. For example, Achilles in one of his quieter moments regrets the rage against Agamemnon that has led him to abandon his fellow Greeks, describing it as a mistake caused by an emotional reaction which he failed to control. He denounces the anger that overcomes reason, describing it as gall that dripping of honey. Later, when Achilles' punishment of Hektor's body becomes excessive as he drags it by the heels around Troy, the gods themselves intervene to prevent its corruption and to persuade him to return it to Priam. In the Odyssey, Odysseus stops his old nurse Eurycleia as she raises a cry of triumph over the bodies of the slain suitors because, he says, it is not proper to glory so over dead men. Since it was customary in battle situations for a warrior to vaunt over the body of his foe, the implication in this passage seems to be that the context of revenge is somehow different, that the suitors have paid for their intrusion into the household, and that to insult them further would be unfair.

The necessity of revenge also seems to have been rooted in powers or cosmic principles beyond human preference. For example in The Odyssey the killing of the suitors, undertaken with the sanction of Zeus and the assistance of Athena, has a character more of execution than of princples beyond human preference. For example in

The climax of the Iliad is the death of the Trojan leader Hektor when he is chased by Achilles around the walls of the city and finally faces him in single combat.

shows that his revenge was an act of cooperation meant to repair the damage Hektor has done to his Greek comrades and his friend Patroklos. By killing Hektor as Hektor killed them he will restore the balance of honor. But he is also angry for himself. By killing Achilles' comrades and by capturing his armor Hektor damaged Achilles' honor as well. He tells Hektor, "I would like to hack your meat away and eat it raw for the things you have done to me.

Why then does Achilles seek revenge on Hektor? Is he acting for his own honor and out of anger and injured pride? Certainly that would be a low motive. Or is he acting out of higher concern for reciprocity and the desire to defend the honor of his companion who would have done the same for him? Or, even higher, is he acting as a good friend and a good Greek defending the honor of his people against their enemies the Trojans? Even though modern readers may question his sincerity, the answer is that all three motivations were real for Achilles. This mixing of levels is made possible because the still general nature of Homeric moral terms allowed more fluidity between moral levels than we might think reasonable. Unlike us, Achilles can slip from one level of thought to another without being bothered by inconsistency. The fact that neither Achilles nor the Greek audiences who listened to the recitations of his motives found them uncomfortable points to a major difference between Homeric thought and our own.

But, different though it may have been, it was still deeply concerned with the question of justice and punishment. The answer, characteristic of the period, lay in reciprocity, and reciprocity meant revenge. If the cardinal moral rule in Homer was to help one's friends and hurt one's enemies, then revenge was a method of rewarding friendship through retaliation against the enemy.

The final illustration of the importance of revenge is that it is the major theme of both the Iliad and the Odyssey, and it was these two poems which were the source of role models and ethical values. While not yet fully developed, the ideas of fairness and reciprocity found in Homer were the first steps in the evolution of the justice concept. They deserve more attention than they have so far received in discussions of Greek ethics. Homeric values were a legacy for the age of Plato and Aristotle. Reformed in the great minds of the Classical Period, they are also an important part of our own ethical inheritance.
What is life? Work followed by television. We dare not go out in the evenings, but why should we, when the whole of life is brought to our hearths?

Anthony Burgess, 1985

Television programming in the United States is transforming our society. Unaware of its incursions, Americans literally “buy into” dramatized patterns of behavior. From the evening news to advertising to prime-time drama like “Dynasty” or “Matt Houston” the distinctions between reality and fiction are blurred if not obliterated. Drama becomes reality; reality, e.g., the news, becomes drama. Contemporary American television posits a world view impacting on interpersonal interactions, family structure, cultural transmission, political decision-making, war and what it means “to know.”

American adults watch some twenty-five hours of television a week; approximately half of these hours are classified as drama. In The Age of Television Martin Esslin points out that today the average American is exposed to as much drama in a week as the most zealous theatre buff of the past century would have seen in several months!

Why do we spend so much time with this nonparticipatory medium? One answer may be that the technology is there, therefore it must be utilized. Another response may be (as Anthony Burgess suggests in 1985) “dullness following dullness.” The situation may be a mixture of at least these two motivations. Technology is a new God- word; television (like the computer) is one of the deities.

If one accepts Esslin’s premise (as I do) that all television is more or less drama, certain consequences follow. First, one is so overwhelmed with a surfeit of drama that one tends to live in a permanent suspension of disbelief. This condition short circuits critical analysis of what one sees and hears. Second, the democratic potential of television is undermined. An uneducated “entranced” populace cannot think critically about issues necessary to its survival. Third, the citizenry becomes easy prey for the rhetorical visions offered by those persons who have power in the established order -- social, political and military. The loss of critical ability attending the permanent suspension of disbelief may lead to “group think” and the belief in American invulnerability and “rightness.”

American television tends to be provincial. Unlike European television systems, we import little programming. International news is reported by Americans, from an American perspective. This can have, in addition to the confusion perpetrated by the fiction/reality dilemma discussed above, serious implications for our involvement in international events. More specifically, of late our national response to most international events tends to be “deploy the missiles and/or send in the troops,” with little regard for the protests of the rest of the world community. This “holy war” mentality is then encouraged by holistic programming enveloping the nation in the creation and recreation of dramas of war, death and destruction. Let me give examples to illustrate this claim.

On November 20, 1983, some one-hundred million Americans clustered around television sets in homes across the country intent on a single program, the controversial “The Day After.” This program, a docudrama (in Newspeak, not a “pure” drama nor a “pure” documentary but a confection composed of a bit of each, laced with a touch of propaganda) coincided with a week dedicated to programs commemorating John F. Kennedy and his presidency. As David S. Broder pointed out in the November 27th issue of The Boston Globe, we had and have a few other pressing problems, such as malnutrition and anemia in increasing numbers of women and children. Broder’s point seems apt enough: the anguish we feel seems to be that which television “makes real” for us. How can real anemia and malnutrition compete with a fake nuclear holocaust? To give an idea of the “real” programming available during late October and November, the following is an incomplete list of some of the events Americans became privy to via the telly:

1. The American “peace-keeping” force in Beirut, plus numerous presidential messages justifying the peace-keeping force.
2. The United States invasion of Grenada, along with numerous presidential messages justifying the invasion in an effort to be a “good neighbor” and “restore democracy.”
3. Not one, but two television documentaries on the Vietnam War. This new-style documentary form allows those who brought us the war initially to write, so to speak, its history for the post-literate generation.
4. The twentieth anniversary of President John F. Kennedy’s assassination.
5. Near-war, death, terrorist acts and assassinations at home and abroad.
6. Worldwide demonstrations protesting the deployment of Pershing missiles to Europe.
8. “The Day After,” and countless commentaries on it.

The American audience, barely able to distinguish between fiction and reality and overwhelmed with war, death and devastation, could only trundle off to work each morning, hoping that better minds were minding the White House.

To be a democratic superpower is no easy task. Having elected this position, Americans -- and America -- must take responsible action. To do this requires an informed, educated citizenry. To achieve an informed citizenry should be an aim of television programming.

Passivity is seemingly encouraged in American classrooms and living rooms (countless empty vessels waiting to be filled). To do what is necessary, i.e., to think issues through, to institute dialogue, to chart some correction for the potentially disastrous international course we navigate, requires discipline and commitment.

Finally, the desire to critically assess issues and not succumb to the lure of forgetfulness in drama is essential. What is needed is not more preparations for war nor docudramas about war but more critical thought, dialogue and the courage to think.

If man is free to evaluate, he is also free to act on his evaluations. But he cannot evaluate without knowledge, and hence cannot act without it. Education consists in acquiring both the knowledge and the terms of evaluation. Hence we are not free not to acquire an education. It is the first condition of freedom.

Anthony Burgess, 1985

Nancy L. Street
Assistant Professor
Speech Communication
Coming in the Next Issue of

Bridgewater Review

"Is There a Caste System in India?" by Abraham Thomas
"Who Needs Child Care: A Look at Day Care in the 80s" by Margery Kranvik
"The Timely Humor of Stephen Leacock" by Harold Ridlon

A Poem by Jackie Crews

Book Reviews
Hardy Moore on Jeremy Rifkin's Algeny
Betty Mandel on Piven and Cloward's The New Class War
Diana Draheim and Benjamin Spence on Jerry Gaff's General Education Today: A Critical Analysis

Research Note
"PCBs in the Acushnet River Estuary" by Jacek Sulanowski

Cultural Commentary
"McCarthyism Twenty Years Later" by David Culver