2011

Aquatic Insect Survey: Goldstein Open Space and Walking Path

Recommended Citation
Available at: http://vc.bridgew.edu/wal_projects/109

This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts.
Aquatic Insect Survey
Goldstein Open Space & Walking Path Path
Randolph, MA
Authors/Students

• India Santos
• Jonathan Burke
• Kelly Danckert
• Jasmin Wilson
• Joseph Hubacheck
• Ketsia Elysee
• Tram Nguyen
• Vicki Trinh
• Jesse Pacheco
• Hieu Phung
Macro Invertebrate Sampling

- Left- India Santos
- Middle- Vicki Trinh
- Right Joseph Hubacheck
Recording Physical Habitat

Jasmin Wilson

• Site Sketch
• Weather Conditions
• Dominate Vegetations
• Overhead Canopy
• Water quality is the term that relates to not only the physical and chemical conditions of the water, but also how it is impacted by human activities and natural processes.
Why Monitor Water Quality?

- Monitoring water quality gives a good indication as to how healthy the ecosystem is and how it is impacted by human activities.
- The quality of the water determines what organisms one will find there.
Taking Samples

• Students collected both water and bug samples that were later studied in class.
What Does the Macro invertebrate Study Indicate?

• Species Richness
• Species Density
Site Description

Narroway Stream

David M. Goldstein Open Area
Randolph Massachusetts
Narroway Stream

Location:

• Randolph

• Located between West and Grove St.
Historical Perspective

• Walking path developed in the 1970’s. After Gibson family moved out.
• 40 acres of land
Weather

- Partly Cloudy
- High 62 Low 31
- 0 inches precipitation
Vegetation

1. Oaks (mostly black and white)
2. Maples (mostly red)
3. Blueberry Bushes
4. American Chestnuts
5. Sassafras
Water Conditions

• Fast flowing
• Murky
• Cold
Norroway Stream

• Looked for a location with a gravel bottom and both slow and fast moving water
Our first sample was taken from slow moving water.
Our second sample was taken from fast moving water.
Equipment:

- Hip Waders
- Collecting net
- Arm length rubber gloves
- Nylon-bristle brush
- Labeling tape, labels, pencils
- Tape measure
- Data field sheets
- Ethanol
- Sieve
We proceeded into the water to begin our sampling.
Sampling procedure

• One person held the net less than a foot above the bed of the river.

• Two other people shook up the sediment while picking up rocks and brushing them in order to collect organisms.
• After each time we collected organisms from both slow and fast moving waters, we transported the bugs from the net to the bucket.

• From there, we used a sieve to extract bugs from the bucket.

• We then preserved the bugs collected from the sieve in a jar with ethanol alcohol.
Sorting Procedure

• We deposited the bugs into a tray with a 12 box grid drawn on the bottom and covered the sample with water.

• Then, we randomly selected three of the twelve boxes from the grid to pick through. The contents of these grids were removed to a Petri dish.

• The contents of the dish were sorted and all the invertebrates were picked out and stored in alcohol.
• Invertebrates were sorted, grouping the same types together.

• They were counted to make sure we had 200 bugs.

• A level one identification was done to the order level.

• Each order was totaled.
Trichoptera

- Adults are mostly nocturnal.
- They hide in cool, moist environments.
 - Vegetation along river banks.
- Body and wings are clothed in long silky hairs.
 - Hairs are called setae.
- Larvae serve as food for fish and other aquatic vertebrates.
- Easier to identify the species by the structure of the case than by the features of the body itself.
Diptera: Chironomidae

- Account for most micro invertebrates in freshwater environments.
- Larvae usually have anterior and posterior pairs or pro-legs.
- Often called “non-biting midges”
- Some are red colored so they are called “blood worm”
- Four life stages:
 - Egg
 - Larva
 - Pupa
 - Adult
Diptera: Other

- It may take up to one year for some species to complete their life cycles if they live in colder regions.
- In tropical habitats, life cycles may be as short as a few weeks.
- Tend to feed on detritus and other small animals and plants.
- Most adults do not feed.
- Certain families are able to withstand a pH value of 2.3 while others can stand electroplating wastes and crude oil.
Amphipoba

- Range in size from 1 to 340 millimeters.
- Body is divided into 13 segments. Segments can be grouped into three categories.
 - Head
 - Thorax
 - Abdomen.
- Eggs are hatched into a juvenile form directly so there are no larvae.
Bug Data

Date Sampled: March 18, 2011

Type of Sample: 0.5m Kick

River or Stream: Narroway Stream, Randolph, MA

Collectors: India Santos, Joe Hubbacheck, Vicki Trinh

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichoptera</td>
<td>1</td>
<td>4</td>
<td>0.30%</td>
<td>12</td>
</tr>
<tr>
<td>Diptera: Chironomidae</td>
<td>193</td>
<td>772</td>
<td>53%</td>
<td>5404</td>
</tr>
<tr>
<td>Diptera: Other</td>
<td>149</td>
<td>596</td>
<td>41%</td>
<td>2384</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>21</td>
<td>84</td>
<td>6%</td>
<td>588</td>
</tr>
<tr>
<td>Totals</td>
<td>364</td>
<td>1456</td>
<td></td>
<td>8388</td>
</tr>
</tbody>
</table>

MGBI: 5.76