2009

The Effect of Draining Forge Pond on the Assonet River

Recommended Citation
Available at: http://vc.bridgew.edu/wal_projects/75

This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts.
The Effects of Draining Forge Pond on the Assonet River

Group Members: Alyssa Barbosa, Brianne Beckman, Jessica Carreiro, Kristen Maltais, Brandon Riendeau, Adrianna Wright and Brieanne Young
Question for Investigation:

HOW DOES THE DRAINING OF FORGE POND EFFECT THE ASSONET RIVER?????
History of the Assonet River

• 18th century - American Revolutionary War.

• 19th century - fishing and cargo ships

• Assonet Bay Shores is a peninsula formed by Assonet Bay, Payne Cove, and Shepherd's Cove. Across Shepherd's Cove is an abundance of higher-end homes.
The Draining of Forge Pond

- **1703-** The Forge Pond dam was built
- **Mid 1800’s-** the dam powered a manufacturing plant.
- **July 2007-** lowering the level of the pond by cutting wooden planks inside concrete sluiceways. They will continue doing so until they drain 3-4 feet of water.
- **Today-** The pond has crested above the dam. The water has also begun to filter through the massive rocks that make up the dam. If one of these rocks were to become dislodged, the entire dam would break.
Beechwood Temperature

- Beechwood consistently has the lowest temperature of the three sets.
- **Why?**
 - Ground water from wetlands.
 - The temperatures show a diurnal change.
pH of the Assonet River

• Factors that increase pH:
 – Surrounding minerals in rock and soil
 – Atmospheric deposition (Acid Rain)

• Factors that decrease pH:
 – Direct atmospheric decomposition
 – Acid mining drainage
 – Industrial discharge
 – Optimal Ranges for Aquatic Organisms: 6.5 - 8.5

• ALL SITES ARE UNDER OPTIMAL RANGE!
Beechwood pH

- Beechwood always maintains the lowest pH values for October and March
 - Why?
 - Cellular respiration
 - Drainage of upstream wetlands
 - Production of CO₂ with decomposition
Overall, there is less DO than other 2 sites on both sampling dates.

Why?
- The water has not yet been aerated by dams
- Upstream from Beechwood is a wetlands area
Beechwood Site Discharge

• Beechwood’s velocity, although it is the upstream site, is decreased compared to the Forge site.

• Why?
 ▪ Forge has a dam
 ▪ Forge pond adds excess water to the downstream sites
<table>
<thead>
<tr>
<th>Major Group or Family</th>
<th>Count Replicate 1</th>
<th>Count Replicate 2</th>
<th>Average Count</th>
<th>Average Density</th>
<th>Group or Family %</th>
<th>Tolerance Value</th>
<th>Total X Average Original Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephemeroptera Baetidae</td>
<td>0</td>
<td>12</td>
<td>6</td>
<td>17</td>
<td>4</td>
<td>4</td>
<td>68</td>
</tr>
<tr>
<td>Ephemeroptera Heptageniidae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0.74</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Plecoptera Nemouridae</td>
<td>2</td>
<td></td>
<td>1</td>
<td>3</td>
<td>0.74</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Plecoptera Taeniopterygidae</td>
<td>0</td>
<td>7</td>
<td>3.5</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Trichoptera Hydropsychidae</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>14</td>
<td>3</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>Trichoptera Philopotamidae</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>0.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Diptera Chironomidae</td>
<td>3</td>
<td>22</td>
<td>12.5</td>
<td>36</td>
<td>9</td>
<td>7</td>
<td>252</td>
</tr>
<tr>
<td>Odonata Cordulegastridae</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>0.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Megaloptera Corydalidae</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0.74</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Coleoptera Elmidae</td>
<td>11</td>
<td>2</td>
<td>6.5</td>
<td>19</td>
<td>5</td>
<td>4</td>
<td>76</td>
</tr>
<tr>
<td>Coleoptera Psephenidae</td>
<td>3</td>
<td>2</td>
<td>2.5</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>79</td>
<td>49</td>
<td>64</td>
<td>183</td>
<td>45</td>
<td>7</td>
<td>1281</td>
</tr>
<tr>
<td>Isopoda Asellidae</td>
<td>9</td>
<td>24</td>
<td>16.5</td>
<td>47</td>
<td>12</td>
<td>8</td>
<td>376</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>2</td>
<td>26</td>
<td>14</td>
<td>40</td>
<td>10</td>
<td>7</td>
<td>280</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>9</td>
<td>0</td>
<td>4.5</td>
<td>13</td>
<td>3</td>
<td>9</td>
<td>117</td>
</tr>
<tr>
<td>Hirudinea</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
<td>4</td>
<td>0.98</td>
<td>8</td>
<td>32</td>
</tr>
</tbody>
</table>
PERCENT TOLERANCE
• The percent tolerant macroinvertebrates for Beechwood is 80.42%.
• The tolerance levels for this category are from 7-10.

PERCENT INTOLERANCE
• The percent intolerant for Beechwood is 8.04%
• The tolerance levels for this category range from 0-3.
• Because the number of tolerant bugs surpasses the number of intolerant bugs, the water quality for Beechwood is poor, with an FBI of 6.51
Forge Site Temperature

- There is an increase in temperature between the Beechwood Site and Forge site.
- **Why?**
 - Impoundment upstream from the bridge
 - Forge Pond
Forge pH

- pH at Forge is higher than Beechwood
 - Why?
 - Less cellular respiration
- Forge is the only site whose pH increases in March
 - Why?
 - Water temperature increases in March
 - More cellular respiration
 - Wetland-like conditions
• DO is higher than Beechwood but lower than Locust
• Why?
• Higher than Beechwood because water has gone through a dam
• Lower than Locust because water has heated up in Forge Pond due to large surface area
Forge Site Discharge

• Forge, although being the midstream site has the highest discharge due to the excess water being removed from Forge Pond.

• Why?
 ▪ Wall
 ▪ Channels
<table>
<thead>
<tr>
<th>Major Group or Family</th>
<th>Count Replicate 1</th>
<th>Count Replicate 2</th>
<th>Average Count</th>
<th>Average Density</th>
<th>Group or Family %</th>
<th>Tolerance Value</th>
<th>Total X Average Original Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephemeroptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetidae</td>
<td>1</td>
<td>8</td>
<td>4.5</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>Heptageniidae</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Plecoptera Perlae</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0.4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Trichoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsychidae</td>
<td>68</td>
<td>16</td>
<td>42</td>
<td>87</td>
<td>17</td>
<td>3</td>
<td>261</td>
</tr>
<tr>
<td>Diptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0.8</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>Empididae</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.4</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Simulidae</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.4</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Odonata Lestidae</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0.4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Coleoptera Elmidae</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>Psephenidae</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>65</td>
<td>191</td>
<td>128</td>
<td>265</td>
<td>50</td>
<td>7</td>
<td>1792</td>
</tr>
<tr>
<td>Isopoda Asellidae</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>1.5</td>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>7</td>
<td>4</td>
<td>5.5</td>
<td>11</td>
<td>2</td>
<td>7</td>
<td>77</td>
</tr>
<tr>
<td>Pelecypoda</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>52</td>
<td>10</td>
<td>7</td>
<td>364</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>8</td>
<td>33</td>
<td>20.5</td>
<td>42</td>
<td>8</td>
<td>9</td>
<td>378</td>
</tr>
<tr>
<td>Hirudinea</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0.8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>1</td>
<td>2</td>
<td>1.5</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>24</td>
</tr>
</tbody>
</table>
Macroinvertebrates of Forge

- Ephemeroptera Baetidae
- Ephemeroptera Heptageniidae
- Plecoptera Perlidae
- Trichoptera Hydropsychidae
- Diptera Chironomidae
- Diptera Empididae
- Diptera Simuliidae
- Odonata Lestidae
- Coleoptera Elmidae
- Coleoptera Psephenidae
- Amphipoda
- Isopoda Asellidae
- Gastropoda
- Pelecypoda
- Oligochaeta
- Hirudinea
- Hemiptera

The percent tolerant macro-invertebrates for Forge is 74.31%.

Because the number of tolerant bugs surpasses the number of intolerant bugs, the water quality for Forge is still poor with an FBI of 6.76.

The percent intolerant for Forge is 17.25%.
locust Site Temperature

- The Locust and Forge Sites have very similar temperatures.

- Why?
 - Less than one-mile apart
 - Scarce canopy
Locust pH

- pH stays generally the same for October and March, and is below optimal range
 - Why?
 - Presence of in-stream vegetation
 - Decaying organic matter

Historical

- According to historical data for Beechwood and Locust, pH was acidic (<5.0) in November of 2006.

So... the data from 2008-2009 is consistent with the historical data.
Dissolved Oxygen
Downstream Site

- Has the most DO in both March and October

Why?
- Water has travelled far, all the while being aerated
- Large rocks and boulders were present, increasing riffling
- Dam upstream has a higher drop with more rocks at its spillway
- A lot of vegetation
Macroinvertebrates of Locust

<table>
<thead>
<tr>
<th>Major Group or Family</th>
<th>Count Replicate 1</th>
<th>Average Count</th>
<th>Average Density</th>
<th>Group or Family %</th>
<th>Tolerance Value</th>
<th>Total X Average Original Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephemeroptera Baetidae</td>
<td>10</td>
<td>10</td>
<td>23</td>
<td>4</td>
<td>4</td>
<td>92</td>
</tr>
<tr>
<td>Ephemeroptera Heptageniidae</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>Trichoptera Hydropsychidae</td>
<td>117</td>
<td>117</td>
<td>269</td>
<td>51</td>
<td>3</td>
<td>807</td>
</tr>
<tr>
<td>Diptera Chironomidae</td>
<td>7</td>
<td>7</td>
<td>16</td>
<td>3</td>
<td>7</td>
<td>112</td>
</tr>
<tr>
<td>Megaloptera Corydalidae</td>
<td>7</td>
<td>7</td>
<td>16</td>
<td>3</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>Coleoptera Elmidae</td>
<td>9</td>
<td>9</td>
<td>21</td>
<td>4</td>
<td>4</td>
<td>84</td>
</tr>
<tr>
<td>Coleoptera Psephenidae</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>Pelecypoda</td>
<td>53</td>
<td>53</td>
<td>122</td>
<td>23</td>
<td>7</td>
<td>854</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>16</td>
<td>16</td>
<td>37</td>
<td>7</td>
<td>9</td>
<td>333</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.4</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>
The percent tolerant macro-invertebrates for Locust is 34.06%.

The percent intolerant for Locust is 54.15%.

Because the number of intolerant bugs is very high, and surpasses the number of tolerant bugs, the water quality for Locust is good with an FBI of 4.61.
Locust Site Discharge

- Locust, originally expected to have the fastest velocity, has the slowest due to a change in the river’s width.

Why?
- Forge site’s wall ends
- Width of the river increases
Discharge of Assonet River, 2008-2009

- **Beechwood**
- **Forge**
- **Locust**

<table>
<thead>
<tr>
<th>Months</th>
<th>Beechwood</th>
<th>Forge</th>
<th>Locust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct-08</td>
<td>60</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Nov-08</td>
<td>40</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>Dec-08</td>
<td>30</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Jan-09</td>
<td>20</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Feb-09</td>
<td>10</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Mar-09</td>
<td>5</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>
Reactive Phosphorus Load

- Loads changed considerably between Oct to March
 - Changes in discharge
 - Weather prior to sampling
 - Forge higher load

- Larger discharge but similar concentration

Reactive Phosphorus Concentrations

- Concentrations were a lot higher than detected in October due to dilution effect
- Smaller amount of rain in Nov + March
 - Nearly equal at each sample site
 - Concentrations are within the normal range less than 0.05 mg/L
Nitrate Concentrations

- All within normal range between 0.1-2.0 mg/L
- Concentrations for October and November were below BDL
- Dilution effect present in Oct

Nitrate Load

- Locust loads were equal between March and Nov. due to similar discharges
- Dilution effect in Oct
The draining of Forge Pond does not affect the water quality of the Assonet River because...

- The pH of the river is in the acidic range just like the historical data.
- The Dissolved Oxygen is consistent with the physical features of the river.
- The Nitrates and Phosphates are within the low normal ranges.
- Macroinvertebrate are inconclusive because the data does not match historical data for the reasons stated.
The Draining of Forge Pond Does Effect...

- Economics – campground
- Aesthetics – backyards, property values
- Recreation on the river
Assonet Thanks...

Kim McCoy, The Roberts Family, Mrs. McNally, Mr. Lincoln