Following Fall Brook

Recommended Citation
Available at: http://vc.bridgew.edu/wal_projects/49

This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts.
Following Fall Brook

Chelsea Preston
Kendra White
Lexi Coe
Arthur Battistini
Introduction

- Fall Brook is a part of the Taunton River Watershed which drains into Mount Hope Bay.

- In studying Fall Brook we examined two separate sites, Wareham Street and Wood Street.
Purpose

- To determine how land use affects nitrate and phosphate levels.
- We tested the nitrate and phosphate levels at each location every hour for twenty four hours from October 9, 2006 to October 10, 2006.
Hypothesis

- We believe that the nitrate and phosphate levels will increase as the river flows downstream into the Nemasket River due to an increase in land use.
Site Locations

Wareham Street
- Located next to a horse farm.
- Downstream from a cranberry bog.
- In a heavily wooded area.

Wood Street
- Of sites tested, furthest downstream
- In wooded area
- Runs through conservation land
- Large Riparian zone
Site Pictures

Wareham Street

Wood Street
Experimental Design

- **Grab Samples**
 - Obtain samples in standard grab sample containers
 - Filter (approx. 30mL) into small brown bottles
 - Freeze samples

- **Sigmas**
 - Anchored Sigma to tree on the bank of each site.
 - Put ice in the bottom of the compartment
 - Let it run for 24 hours.
 - Discard every other sample.

- **Put Hydrolab in water, making sure it doesn’t touch the bottom.**
 - Tests for pH, dissolved oxygen, and temperature.
Sigma and Hydrolab
pH Fall Brook
10/9/06 and 10/10/06
Water Chemistry Directed Study

Time (hr:min:sec)
Temperature of Fall Brook
10/9/06 and 10/10/06
Watershed Chemistry Directed Study

Time (hr:min:sec)
Temperature (C)

Wareham St
Wood St
Dissolved Oxygen
10/09/06 and 10/10/06
Watershed Chemistry Directed Study

Time (hr:min:sec)
Discharge at Fall Brook: Wareham and Wood Street

Study Site

Wareham Street

Wood Street

L/s
SRP and N-NO3 Loads For Study Sites Fall Brook: Wareham and Wood Street

<table>
<thead>
<tr>
<th>Load g/day</th>
<th>SRP FB, Wood Str.</th>
<th>SRP FB, Wareham Str.</th>
<th>N-NO3 FB, Wood Str.</th>
<th>N-NO3 FB, Wareham Str.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- Wood Street has higher nitrate levels
 - Further downstream
 - more land use.
 - Higher discharge and load
 - More water and pollutants going through location

- Phosphate has barely any difference
 - Levels too low to create a large effect.

- pH, Dissolved Oxygen, Temperature levels differ only slightly
Conclusion contd.

- Nitrate and Phosphate levels were non-toxic
 - Large Riparian zone
 - Improves water quality
 - Sediment filter
 - Pollution filter
 - Regulate stream flow
 - Bank Stabilizer
 - Allows for biodiversity within the ecosystem of the River at each location.

- Hypothesis was incorrect
 - Phosphate levels did not change significantly
Possible Threats to Fall Brook

- Development
 - Destroys Riparian zone
 - Pollutants are not leached out

- Cranberry bogs not a threat
 - Environmental regulations ensure lower chemical levels