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Analysis of the “Travelling 
Salesman Problem” and an 
Application of Heuristic 
Techniques for Finding a New 
Solution
MATEUSZ PACHA-SUCHARZEWSKI

In 1832, a German travelling salesman published a handbook describing his 
profession.  Sadly, his name is unknown; he only stated that the book was 
written by “one old travelling salesman.”  However, he has come down in 
history thanks to a rather simple and quite obvious observation.  He pointed 

out that when one goes on a business trip, one should plan it carefully; by doing so, 
one can “win” a great deal of time and increase the trip’s “economy.”  Two centuries 
later, mathematicians and scientists are still struggling with what is now known 
as the “Travelling Salesman Problem” (TSP).

The Problem
The authors of The Traveling Salesman Problem: The Computational Study 
define the TSP as follows: “Given a set of cities along with the cost of travel 
between each pair of them,” the problem “is to find the cheapest way of 
visiting all the cities and returning to the starting point” (1).  In other words, 
the shortest possible route between a number of cities has to be found.  The 
task does not seem to be difficult -- all of the possibilities have to be checked.  
Unfortunately, that is where problems start….

For small examples of the TSP (often called “instances” of the TSP), say 
four or five cities, optimal routes can be identified fairly quickly.  The only 
“advanced” math that has to be applied is addition (adding the distances of 
used roads produces the tour’s length) and a comparison of the results for 
each possibility; however, with additional cities the number of possibilities 
for tours grows rapidly, making the TSP unsolvable within a reasonable time 
frame.  Table 1 illustrates the issue.

Table 1

Number of Cities   Number of Possibilities
5 5! =  5*4*3*2*1 = 120

25 25! =  25*24*23*...*3*2*1 = 15,511,210,043,330,985,984, 
000,000

100 100! = 93,326,215,443,944,152,681,699,238,856,266,700, 
490,715,968,264,381,621,468,592,963,895,217,599, 
993,229,915,608,941,463,976,156,518,286,253,697, 
920,827,223,758,251,185,210,916,864,000,000,000, 
000,000,000,000,000
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The large numbers shown in the Table 1 are truly horrifying; 
they are impossible to be named and even worse to be grasped.  
Clearly, larger instances of the TSP cannot be solved by a 
human with pencil and paper.  Luckily, with modern computer 
technology those numbers probably should not scare us.  For 
instance, assuming that we have a supercomputer capable of 
checking a billion possibilities every second, 25-city example 
should be solved fairly quickly.  Unfortunately, after a thousand 
years it would have checked only 31,557,600,000,000,000,00
0 possibilities, and that is not even close!

NP-Completeness
Millions of years of supercomputer computations would bring 
solutions even to some of the large instances.  Therefore, the 
TSP is, in fact, solvable; however it is not solvable in polynomial 
time.  That means that the TSP is an NP-complete problem.  NP-
complete problems (NP is an abbreviation for “nondeterministic 
polynomial time”) cannot be solved in a reasonable amount 
of time due to the extreme number of cases.  However, if a 
perfect solution is known, a test of any given solution would 
not take long.  It is best described by the statement that “if 
only we could guess the right solution, we could then quickly 
test it” (Eppstein).  Math is not about guessing, though:  It is 
about solving and proving.  As David Eppstein very accurately 
pointed out, “NP-completeness is a form of bad news: evidence 
that many important problems can’t be solved quickly.” 

History
In the mid-nineteenth century, mathematicians were already 
looking at the TSP.  The best known among them was Sir 
William Rowan Hamilton, an Irish scientist who is famous 
for his contributions to mathematics (especially graph theory) 
and physics.  However, the TSP was not officially recognized 
to be a problem in mathematics until the 1930s when Dr. Karl 
Menger, Professor of Mathematics at the Illinois Institute of 
Technology, shaped the definition of the TSP.

The interest in the problem seemed to have its peak at the 
beginning of the twenty-first century.  The Clay Mathematics 
Institute, a mathematical non-profit foundation established in 
1998 by London T. Clay, a Boston businessman, to “increase 
and disseminate mathematical knowledge,” created a list 
of Millennium Prize Problems and the TSP is one of them.  
The Clay Institute offers $1,000,000 for anyone whose TSP 
solution succeeds perfectly.

Applications
The incredible amount of money offered by the Clay Institute 
may be surprising.  However, when taking into consideration 
how much money and possibly time various government and 
non-government institutions and companies may save by having 

the ability of finding a perfect solution to any TSP example, the 
reward value becomes understandable.  For example, according 
to the United States Postal Service, their fleet travels about one 
and a quarter billion miles every year.  More efficient routes 
could result in millions of dollars in savings on fuel then.  And 
that applies to basically any organization connected to delivering 
goods or providing on-site services.  A perfect TSP solution 
could also be helpful with machine sequencing in industry and 
genome sequencing problems in genetics (Chen, 139).

The TSP in Mathematics
In search of a perfect solution for the TSP, mathematicians 
were and are trying different approaches, quite often using 
geometry and linear algebra.  However, over time, the problem 
is best settled in graph theory.  Graph theory allows visual 
representations of mathematical problems.  Its basic element, a 
graph, is a set of vertices connected by edges.  In other words, 
it is a collection of dots connected with lines.  If all of the 
vertices are directly connected with each other, then the graph 
is complete.

The TSP instances can be well transformed into (usually 
complete) graphs; every vertex can have a city assigned to it 
while edges may carry the values of distances between the 
cities.

Human Performance
Psychologists are not surprised that graph theory overpowered 
other areas of mathematics, claiming the TSP as its own.  The 
key to the mystery seems to lie in how we comprehend things.  
Once a TSP example is represented visually, the human brain 
is capable of quickly finding good solutions.  Dr. Iris van Rooij 
conducted a study where the participants were given sheets of 
paper with sets of dots on them and were asked to connect 
them as efficiently as they can.  Table 2 (source: The Traveling 
Salesman Problem: A Computational Study) shows the average 
results achieved by the participants; the percentage indicates 
additional tour length in comparison to the optimal tours.

Table 2

Number of Cities 7-Year-Olds 12-Year-Olds Adults

 5 3.8% 2.5% 1.7%

 10 5.8% 3.4% 1.7%

 15 9.4% 5.0% 2.7%

Results of the study by Dr. Iris van Rooij

Source: The Traveling Salesman Problem: A Computational Study
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Interestingly, age greatly contributes to better results.  
According to the researchers, when the brain develops, “both 
perception and cognition” improve (Applegate, 35); there 
also is “a modest correlation between TSP performance and 
the scores of individuals on a standard nonverbal intelligence 
test” (Applegate, 36), and they all play a key role in identifying 
more efficient solutions.  Psychologists also point out “a 
human desire for minimal structures” and an appreciation of 
aesthetics (Applegate, 32).  Dr. Douglas Vickers, an Australian 
psychologist, pointed out that: “the link with intelligence, 
and the occurrence of optimal structure in the natural world, 
suggest that the perception of optimal structure may have some 
adaptive utility” (qtd. by Applegate, 35).

Important Observation
The appreciation for tour aesthetics combined with graphical 
representations of the TSP resulted in an important discovery.  
Namely, no optimal TSP solution has roads that cross each 
other.  Allow me to demonstrate:

Let four random cities of a TSP tour be named A, B, C and D.  
City A is connected to D with edge AD and B is connected to C 
with edge BC, and the cities are positioned such that those edges 
cross each other at point M (Figure 1 illustrates the situation).  
So, |AD| = |AM| + |DM| and |BC| = |BM| + |CM|.  There are 
also unused alternative edges AB and CD that connect cities 
A with B and C with D (where AB and CD do not cross each 
other).  The edges create two triangles: ΔABM and ΔCDM, 
with M being a common vertex.  In order to have a triangle, 
the sum of any two of its edges must be greater than its third 
edge.  So, |AM| + |BM| > |AB| and |CM| + |DM| > |CD|.  As 
a result, |AM| + |BM| + |CM| + |DM| > |AB| +|CD|, which 
can be rewritten as |AD| + |BC| > |AB| + |CD|.  Therefore, 

uncrossing edges makes the tour shorter.  Thus, no optimal 
TSP tour contains roads that cross each other.  Q.E.D.

Held-Karp Lower Bound (H-Klb) Estimation
Toward the end of 1970s, an important tool was developed 
which is used to estimate what the length of an optimal tour 
should be.  Designed by Dr. Martin Held and Dr. Richard 
M. Karp, it is called the Held-Karp lower bound (H-Klb) 
estimation.  Before explaining its principles, I ought to define 
a few terms.

In the field of graph theory, if a traveling salesperson starts at 
a vertex (city), visits at least two other vertices, and finishes at 
the initial one without repeating any of the edges (roads) or 
vertices along the way, then his/her tour is a cycle.  When there 
are two or more non-empty sets of vertices (every set has to 
contain at least one vertex) in a graph and there are no edges 
between those sets, then the graph is disconnected.  Using the 
terms defined above, Dr. Gary Chartrand and Dr. Ping Zhang 
describe a tree as “an acyclic connected graph” (87).  If vertices 
of a tree are connected such that the sum of all the edges is the 
smallest possible, that it is called a minimum tree.

H-Klb is based on a minimum 1-tree, which is a minimum 
tree containing one cycle.  The minimum 1-tree undergoes a 
series of transformations; subsequently multiple formulas alter 
a number, which at the end becomes the lower bound.  Dr. 
David S. Johnson and his colleagues established that the H-Klb 
is “on average within 0.8% of the optimum for (…) instances 
with many thousands of cities” (Jones, 5) and “the gap is almost 
always less than 2%” (Johnson, 1).  Due to extensive numbers 
of required operations, only computers are used to estimate the 
lower bound.

Methods
Years of research and tests have brought some interesting 
techniques, which allow people who work on TSP instances to 
either find TSP tours from scratch or improve the ones that are 
already in existence.
n-Opt Moves:

When trying to improve an existing TSP tour, a method called 
n-Opt Moves offers help.  Its rules are quite simple: identify 
and remove n edges and replace them with n alternative 
connections, but only if the modified tour will turn out to be 
more efficient.  For instance, a 2-opt move, meaning find 2 
edges, remove both and create 2 alternative connections, can 
be used to uncross edges.

Cutting Planes
“A breakthrough in solution methods for the traveling salesman Figure 1
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problem (TSP) came in 1954, when George Dantzig, Ray 
Fulkerson, and Selmer Johnson (…) published a description of 
a method for solving the TSP and illustrated the power of this 
method by solving an instance with 49 cities, an impressive size 
at that time” (Georgia Institute of Technology).  This method 
is called Cutting Planes and is based on identifying groups of 
clustered cities (or vertices), described as cutting planes, and 
separating them from the rest of the cities, creating smaller 
instances.  The small cases can be solved fairly quickly and then 
reconnected with each other.  In 1976, Dr. Martin Grötschel 
adapted the method and found an optimal tour between 120 
cities in Germany.  Figure 2 (source: The Traveling Salesman 
Problem: A Computational Study) shows Grötschel’s hand 
drawing that identifies cutting planes (Applegate, 111).
Control Zones and Moats:

As I briefly mentioned before, geometry also has a role to play 
in the problem.  The method called Control Zones and Moats 
is purely geometrical.  The technique calls for every city to be 

surrounded with a circular area with an arbitrary radius, and 
every area should connect with two other ones, but they cannot 
overlap with each other. Those areas are called control zones.  
If there is a gap between some areas that causes some clustered 
control zones to be separated from the rest, then additional 
larger circular areas, called moats, are assigned to create the 
missing connections.  Figure 3 (source: Georgia Institute of 
Technology: http://www.tsp.gatech.edu/) shows control zones 
marked in light gray and moats in dark gray.

Algorithms
In addition to the above methods for attempting to solve the 
TSP, there are TSP algorithms.  An algorithm is a specific set 
of rules which establishes how to treat a given problem; usually 
it defines a step-by-step repetitious procedure which has to be 
followed.  Before I describe some of the TSP algorithms, I should 
explain that the number of edges incident with (connected to) 
a vertex is called a degree (Chartrand, 27).

Greedy Algorithm
The Greedy Algorithm is based on building a tour by selecting 
and using the shortest possible edges.  The initial step is to 
make a list of all edges in order of their increasing length.  Once 
the list is completed, the shortest available edges are repeatedly 
chosen and included in the tour.  While selecting the edges, 
it is necessary to make sure that the next edge intended to be 
used will neither close a smaller cycle, excluding some vertices, 
nor connect to a vertex which already has a degree 2.  The 
algorithm’s results exceed optimal tours by 14% on average, 
judging by the H-Klb.

Vertex Insertion Algorithms
Vertex Insertion Algorithms are based on picking an initial 
vertex and then including the rest of the vertices into a tour, 
adding one at a time.  There are different ways of choosing 
which vertex should be included next.Figure 2

Figure 3



BRIDGEWATER STATE UNIVERSITY 2011  •  THE UNDERGRADUATE REVIEW  •  85

The Cheapest Insertion Algorithm inserts a “free” vertex into 
a partial tour such that the tour-length increase will be the 
smallest possible.  This variation of Vertex Insertion provides 
tours that are about 27% longer than suggested by the H-Klb.  
Nearest Insertion and Farthest Insertion algorithms insert a 
“free” vertex which is respectively the closest to or the farthest 
from any of the vertices that are already a part of the tour.  The 
Nearest exceeds the H-Klb by 22% and the Farthest goes over 
the bound by only 11%.  The best among the Vertex Insertion 
Algorithms turns out to be the Random Insertion Algorithm. 
Just as the name suggests, a purely random “free” vertex is 
inserted into the partial tour; the entire tour at the end goes 
beyond the H-Klb estimation by 9%.

The last but not the least among the Vertex Insertion algorithms 
is the Angle Selection Algorithm which is based on geometry; 
therefore it can only be used on geometric graphs of the TSP 
(where relative positions of every vertex and distances between 
the vertices correspond adequately to its real life equivalents).  
This algorithm, which has a similar principle to the Cheapest 
Insertion (lowest possible increases in the partial tour’s length), 
inserts a “free” vertex into a partial tour such that the angle 
created by the two new edges connecting the newest city to 
the rest of the tour will be as close to 180° as possible.  Figure 
4 shows an example of two possible angles, AMB and ANB, 
which can be created by including cities M and N into the 
tour.  Visibly, adding city M and the angle AMB, which is 
closer to 180° than the angle ANB, into the tour will result in 
a smaller length increase (note that the edge AB will disappear 
after including city M).

Nearest Neighbor Algorithms
Two Nearest Neighbor Algorithms are named perfectly; they 
also resemble the Nearest Insertion Algorithm.  For both, 
an initial vertex has to be chosen.  At this point, a travelling 
salesperson has to make a decision on how to build his/her 
tour.  The basic Nearest Neighbor algorithm asks the person to 
expand the trip in just one direction -- from the initial city the 

person has to visit its closest neighbor, from the neighbor to the 
neighbor’s closest neighbor, without repeating any cities, and 
so on; when no more “free” cities are left, the salesperson goes 
back directly to the initial city, closing a cycle.  For the Double-
Ended Nearest Neighbor Algorithm, once the salesperson has 
the first two vertices connected with an edge, he/she has to 
check which of the two cities has the closest “free” neighbor 
available and connect it to the trip.  In other words, the trip 
can be expanded in two directions, until a cycle is closed at 
the very end.  Once again, a short cycle cannot be closed, 
excluding some vertices.  Both variations exceed the H-Klb by 
circa 23%.

Heavy Edge and Degree (HEaD) Algorithm
The HEaD Algorithm is my own creation.  As I discovered 
during my TSP research, I approached the problem differently 
than anybody else, in a way creating an opposition to the 
Greedy Algorithm, actually even before being aware of the 
existence of the Greedy Algorithm.  This is how HEaD works:

The TSP instance has to be presented as a complete graph, 
unless there are vertices that simply do not have a direct 
connection between them, and every vertex needs to have a 
degree of at least 2.  First, I start with identifying the degrees of 
the vertices.  Then, I focus only on the vertices that uniquely 
hold or share the highest degree among all.  Following that, I 
find the longest edge connected to any of those high degree 
vertices, and remove it.  At that point, the two of the vertices 
which were previously connected by the removed edge go 
down by a degree.  I keep identifying the high degree vertices 
and removing the longest edges connected to them until every 
vertex has a degree 2 -- I then have a cycle.

There are a couple of things that I have to be careful about, 
though.  When removing an edge, I have to make sure that 
the removal will cause neither of the two vertices that the 
edge connects together to go below degree 2 or force me to 
close a short cycle.  Also, if there are multiple longest edges 
which connect to a highest degree vertex, which one should be 
removed?  In such a case, I look at the vertices that the longest 
edges are connected to at their other ends, and remove the edge 
which at its other end has the highest possible degrees (the 
highest degree here does not have be the highest in the graph 
at the time).  I should point out that there could be an instance 
where the by-the-rules edge removal determination (which 
among the multiple longest edges connected to a highest degree 
vertex should be removed) would be impossible, and then the 
edge choice must be arbitrary.  An extreme example of such an 
instance can be a complete graph that has all the edges of the 
same length.

Figure 4
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So far, HEaD turned out to be able to provide optimal tours 
for some TSP instances, on average exceeding the H-Klb by 
about 5%.

Why Do Algorithms Fail?
The difficulty with the TSP instances is that the shortest 
possible edge may not always be included in an optimal tour 
while sometimes the longest possible one has to be a part of an 
optimum.  That is why, for instance, both Greedy and HEaD 
algorithms fail, providing results which exceed optimums.  The 
Greedy Algorithm may force the use of an unwanted short 
edge, while HEaD may eliminate a long edge that should be 
used in an optimal tour.  So far, no one has discovered a way 
around the issue and all of the current algorithms produce 
results only fairly close to optimal according to H-Klb, even 
though there are TSP examples where certain algorithms do 
produce optimal tours.

There is also an undefined step for Greedy algorithm: Let two 
edges have the same length, which would be the shortest length 
available at the moment.  If the use of both those edges would 
result in closing a smaller cycle, then only one of them could 
be used.  However, there is no rule which can determine which 
one of the edges to choose and include in the tour. 

Combining Algorithms
At this point the best method for attempting to solve TSP 
instances is using multiple algorithms and techniques for a 
single instance.  For example, a tour can be produced by the 
Greedy Algorithm, and then a series of 2-opt moves can be 
used to improve the tour.

Solved cases
There is also a computer program called Concorde based on 
multiple algorithms. Over the years, with some improvements 
along the way, it has shown to be a wonderful tool capable of 
fairly quickly finding near optimal solutions.

The largest instance that the Concorde was working on is the 
World TSP Tour of 1,904,711 places around the globe. “The 
current best lower bound on the length of a tour for the World 
TSP is 7,512,218,268” (Georgia Institute of Technology: 
http://www.tsp.gatech.edu/) with the best found tour length of 
7,515,796,609. “The bound shows that Keld Helsgaun’s tour,” 
of 7,515,877,991, (best until May 4, 2010) “has length at most 
0.0477% greater than the length of an optimal tour” (Georgia 
Institute of Technology: http://www.tsp.gatech.edu/) which is 
extremely close!

The TSP has been and still is unsolvable but there is a hope for 
a perfect solution!
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