VOLUME 68 (1)  Spring 2007

CONTENTS:

Editor's Note .................................................. 1

A Prehistory of Boston Common .................................. Joseph M. Bagley  2

PaleoIndian Sites and Finds in the Lower Merrimac River Drainage .......... James W. Bradley  12

A Preliminary Report on the McWade Site: A Middle Archaic site on Massachusetts Bay .................. Jeff Boudreau and Mike McWade  21

Additional Information on Late Archaic Caches in Essex County ........ Eugene Winter  28

A late Middle Woodland Burial at Seaver Farm ..................... William Taylor  33

Contributors .................................................. inside back cover

THE MASSACHUSETTS ARCHAEOLOGICAL SOCIETY, Inc.
P. O. Box 700, Middleborough, Massachusetts 02346-0700
THE MASSACHUSETTS ARCHAEOLOGICAL SOCIETY, Inc.
Robbins Museum of Archaeology
Web Site address: www.massarchaeology.org
Contact by phone: (508) 947-9005
by email: info@massarchaeology.org

Officers:
Tonya Largy, 59 Moore Road, Wayland, MA 01778
Frederica Dimmick, 10 Sassamon Road, Natick, MA 01778
Susan Jacobucci, 678 Chief Justice Cushing Highway, Scituate, MA 02066
Edwin C. Ballard, 26 Heritage Road, Rehoboth, MA 02769
Eugene Winter, 54 Trull Lane, Lowell, MA 01852
James W. Bradley, 55 Park Street, Charlestown, MA 02129
Curtiss Hoffman, 58 Hilldale Road, Ashland, MA 01721
Michael Volmar, Fruitlands Museum, Harvard, MA

 Trustees:
Janet M. Bessette, 36 Church Street, Gilbertville, MA 01031
Philip Graham, 13 Liberty Lane, Norwood, MA 02062
Dan Lorraine, 63 Cranberry Terrace, Cranston, RI 02828
Thomas Lux, 38 Somerset Avenue, Riverside, RI 02915
Richard Lynch, 12 Greenbrier Road, Greenville, RI 02828
Maryanne MacLeod, Swett Hill Road, Sterling, MA 01564
Kevin Quackenbush, 5 Daniel Drive, Middleborough, MA 02346
John Rempelakis, 7 Fairview Farm Road, Haverhill, MA 01832
Fred Robinson, 6 Christopher Drive, Greenville, RI 02828
Alan F. Smith, 156 Ararat Street, Worcester, MA 01606
Jeffery Stevens, 36 Neponset Avenue #2A, Roslindale, MA 02131
William Taylor, 108 Vernon Street, Middleboro, MA 02346
John Thompson, 406 Main Street, Medfield, MA 02052

Judith Zeitlin, Dept. Anthropology, UMass, Boston, MA 02125
Richard Lynch, 12 Greenbrier Road, Greenville, RI 02828
Curtiss Hoffman, 58 Hilldale Road, Ashland, MA 01721
Jeff Boudreau, 38 Albert Ray Drive, Ashland, MA 01721
Kathryn M. Fairbanks, 145 Aldrich Street, Roslindale, MA 02131
Jeffery Stevens, 36 Neponset Avenue #2B, Roslindale, MA 02131
Tom Largy, 59 Moore Road, Wayland, MA 01778

President
Vice President
Clerk
Treasurer
Museum Coordinator
Bulletin Editor
Corresponding Secretary
Past President

Term Expires
October 2008
October 2008
October 2009
October 2008
October 2008
October 2009
October 2009
October 2007
October 2009
October 2008
October 2007
October 2007
October 2007

The BULLETIN OF THE MASSACHUSETTS ARCHAEOLOGICAL SOCIETY is published semi-annually, with a Spring issue, Number 1, and a Fall issue, Number 2. Institutional subscriptions are $30; individual memberships in the Society that include receiving the Bulletin are $20. Information on special rates for membership without the Bulletin, family members, seniors and students, as well as requests for back issues of the Bulletin, should be addressed to the Massachusetts Archaeological Society, P.O. Box 700, Middleborough, MA 02346 (508-947-9005). Publication in the Bulletin is a privilege of membership. Manuscripts and communications may be sent to the editor, James W. Bradley, 55 Park Street, Charlestown, MA 02129 or emailed to jbradley@archlink.org.

Printed by Kendall Press, One Main Street, Cambridge, MA 02141
Editor’s Note

This issue of the Bulletin covers a wide range of topics - chronologically, from PaleoIndians to the beginning of the Late Woodland period, and subject-wise, from the discovery of new sites to the ongoing examination of ones long known. First-time contributor Joseph Bagley presents an excellent overview of Boston’s aboriginal past in his analysis of materials recovered from two sites on Boston Common in the 1980s. I continue my quest to document as many PaleoIndian sites and isolated finds as possible, this time focusing on the Merrimack River drainage in Massachusetts. Jeff Boudreau and Mike McWade presents an initial report on an important Middle Archaic site recently discovered along the south shore of the Boston Basin. Gene Winter continues his investigation of Late Archaic caches in Essex County and also reports on a newly received radiocarbon date from Feature 14 at the Call site that he discussed in a previous issue of the Bulletin. Bill Taylor also revisits familiar territory. He reports new information, including an important Middle Woodland radiocarbon date, for Burial 6 at the Seaver Farm site.

As all these articles indicate, there is still much to learn about the cultures of Massachusetts’ Native people, and much to report in the Bulletin, even after sixty-seven years of continuous publication. As always, I thank all the contributors for their dedication and hard working in producing these articles. Thanks also go to proof readers Shirley Blancke and Kathy Fairbanks, and to Margaret Bradley for editorial and formatting assistance.

James W. Bradley
Introduction

In 1986, a large-scale archaeological survey was conducted within Boston Common under the direction of then City Archaeologist, Steven Pendery. A main goal of this survey was to provide recommendations to the city regarding management of archaeological resources found in the Common, prior to the commencement of proposed construction projects (Pendery 1988). During this survey, numerous significant historic sites and two prehistoric shell middens were identified. Originally published in 1988, Pendery’s report of his findings included a very brief summary of two areas of prehistoric occupation: the Frog Pond site (19-SU-60) and the Block 79 site (19-SU-61).

In 2005, I revisited the prehistoric assemblages from the 1986 excavations of the Common as part of my Senior Independent Work for Distinction at Boston University (Bagley 2006). A summary of my findings on two of these two prehistoric sites is presented here. The Boston Common is protected municipal parkland, and unauthorized artifact collecting is prohibited to conserve finite cultural resources. Because it is public land, archaeological investigations require a State Archaeologist’s permit (950 CMR 70).

Both sites are located within the present-day boundaries of Boston Common (Figure 1), which was declared commonly held land in 1634 and has never been extensively built upon. The Frog Pond site is situated between the modern-day Frog Pond and Beacon Hill. The Block 79 site is located in the southeastern corner of the Common near the Parkman Bandstand and Boylston T-Station. While some significant land modifications have occurred to the Common over the past four hundred years, partial preservation of the two prehistoric sites in downtown Boston is a direct result of the creation of the park in the early Colonial period.

Environmental Setting

The city of Boston is located in the center of the geographic area known as the Boston Basin. This basin formed 600 million years ago when the tiny continent of Avalon began to rift apart creating a large valley that then filled with sediment. 370 million years ago this tiny continent slowly collided with the massive Laurentian Continent (most of modern day North America) adding the relatively small area of land that is now much of eastern Massachusetts. Over millions of years, the sediments within the basin metamorphosed into the Cambridge slates and local argillites found throughout the area (Skehan 2001).

At the end of the Pleistocene (14,000 years BP) Boston would have looked very different than it does today. Sea levels were nearly 120 meters below modern levels. At this time, Boston was miles from the shoreline and the Harbor Islands were connected to the mainland (Simon 2001). Multiple episodes of ice advances and retreats occurred over Boston resulting in an accretion of up to 300 feet (90m) of glacial deposits on Boston. This sediment consists of glacial till, drumlins, and moraines. A characteristic of these glacial deposits was the presence of plentiful spring water that flowed from the
moraines and various other landforms in the area (Skehan 2001). Over the next several millennia, sea levels rose with minor fluctuations before reaching their present, and still rising, level.

During the Archaic period (10,000 BP-3,000 BP), the earlier spruce forests were replaced with deciduous species that could support large numbers of deer, rabbits, and other woodland animals. A broad subsistence pattern of hunting and gathering occurred within established territories focused on river drainages (Jones and Seasholes 1986). By this time, outlets of rivers and estuaries such as the Charles River and Back Bay areas, which were located only meters from these sites, became important focal points of habitation (Dincauze 1973, 1974). The well-known Boylston Fishweirs, dating to between 3,700 BP and 3,400 BP (Johnson 1942; Decima and Dincauze 1998) were constructed just west of the Frog Pond and Block 79 sites in the tidal area of the Back Bay and used to harvest seasonal migrating fish in the spring.

In the Boston area, the Woodland period (3,000-450 BP) may have been marked by a decline in population and the concentration of smaller sites at river outlets and estuaries, as well as an increase in the occupation of the islands of Boston Harbor (Dincauze 1973, 1974; MHC 1982). At the Contact period, outlets and estuaries were social and political centers and extensive networks of trails, paths, and waterways were used for trade and communication. Early Native trails later
became well-known roads, such as Shawmut Avenue (Figure 1), that traveled the narrow isthmus between the mainland and the hilly peninsula that would become Downtown Boston.

Shawmut, the Native name for the peninsula, was first settled by Europeans around 1625. In 1630, a colony of Separatists moved from Charles Town, across the Charles River, and created a new town they named Boston (Skehan 2001). An account by European settler Roger Clapp described an encounter between ten colonists and a group of 300 Native Americans, presumably Massachusetts. One of the Massachusetts approached the colonists with a large fish and a colonist was sent to exchange a biscuit or cake with the Native. This exchanging of goods between the colonists and the native peoples of Shawmut is said to have occurred regularly. Goods provided by the inhabitants of Shawmut included corn, “frost-fish”, mussels, and clams (Shurtleff 1872). This record shows that the natives were still relying on clams for at least part of their diet. In 1630, the land that is now Boston Common was purchased from William Blackstone, the first European settler of Boston, and in 1634 preserved for public use (Pendery 1988).

**Modifications to Boston Common**

The relative lack of building on Boston Common has resulted in the partial preservation of the Frog Pond and Block 79 sites. This does not mean that the area escaped all disturbances over the past 400 years. In 1634, William Wood provided one of the earliest descriptions of Boston, as Shawmut had been re-named. He lamented the lack of trees and meadowland on the moderately hilly peninsula, but rejoiced the lack of “Woolves, Rattle-snakes, and Musketoes” (Shurtleff 1872: 41).

Wood’s colorful description of Shawmut indicates that at the time of European arrival, the Native occupants of the tiny peninsula had already modified its flora. The peninsula was dominated by a three-peaked hill located at the modern northern boundary of Boston Common. These three hills were later named (from west to east) Mount Vernon, Beacon Hill, and Pemberton Hill, and were collectively known as “Tri-Mont” (Seasholes 2003) or the Tremont. Within the Common several hills, ponds, and physical features existed, of which only the Frog Pond and Powderhouse Hill still exist. Three other hills: Fox Hill, Ridge Hill, and a small hill known colloquially as Washington Hill have been completely removed over the years (Shurtleff 1872). Fox Hill used to be located in the tidal area where the entrance to the Common from Boston Public Gardens now exists (Kaye 1976) (Figure 2).

The various ponds that existed on the Common were fed by springs and likely fluctuated in volume depending on precipitation. Few historic maps include the Frog Pond and it is likely that it, too, may have been seasonal or
sporadic in the early historic period. The removal of the hills that produced springs on and near the Common also could have affected the Frog Pond. The shoreline in prehistory was only a few hundred feet from the Frog Pond and Block 79 sites and, during low tide, acres of mudflats would have been exposed in the area that is now the Back Bay, Commonwealth Avenue, and Kenmore Square (Figure 1) (Shurtleff 1872: 347). These flats were the location of the fish weirs during the Late Archaic, but in later years during the major occupation of the Frog Pond would have been ideal clam beds and the likely source for the thousands of clamshells found on these two archaeological sites. Today, there are no longer mudflats west of the Common, a result of filling in the Back Bay during the 19th century.

Fortunately, the two sites discussed here survived the massive episodes of grading and landscaping of the Common begun after the American Revolution. The leveling of Mt. Vernon, Beacon Hill, and Pemberton Hill between 1803 and 1848 removed all but the most developed portion of Beacon Hill (Seasholes 2003; Whitehall 1973). This area, now dominated by the State House, is located just north of the Frog Pond site. During the 19th century, a series of major construction and land making projects created a dam across Back Bay (from the Common to Kenmore Square along the present route of Beacon St.) and filled in the enclosed area with sand brought from Needham. As a result, the Frog Pond and Block 79 sites are now located in the heart of Boston and not along the shore as they once were. In the early 20th century, the Olmsted landscaping project (1910 to 1913) proposed to replace much of the soil around the Common’s paths and trees to a depth of up to 6 feet. Such changes would have likely obliterated the surviving sites. In his 1986 excavation, Pendery showed that the Olmsted plans were not strictly followed, and that these two sites were not destroyed (Pendery 1988).

The modern shape of the Frog Pond was established in 1836 with the placement of stones around the pond’s circumference. In 1848, a major celebration was held when water from the Cochituate Lake was pumped into the pond and a large fountain turned on (Shurtleff 1872). Today the pond is enjoyed by thousands of Bostonians and visitors. In the humid summers of Boston, the shallow pond, with its cemented bottom and controlled water level, is a popular wading area for children and the general public. In the winter, the Frog Pond is converted to a very popular public skating rink.

Previous Archaeological Work

Several archaeological surveys within the Common have explored the uses and disturbances of the Common over the years. The Boston Common Garage project of 1960 was a salvage project during which geologist Clifford Kaye was able to reconstruct the geology of the area. Mary Beaudry and Tamara Blosser (1983) of Boston University analyzed Kaye’s collection from an urban archaeological perspective. The Park Street Extension Project of 1985 produced numerous historical artifacts and features (Pendery 1988). Pendery established that the topography of the Park Street area has remained relatively undisturbed since prehistoric times and has significant potential for prehistoric and historical sites (Pendery 1988). The Boston Edison Pipe-Cable Corridor Survey also evidence that prehistoric sites may have survived (Jones and Seasholes 1986). Finally, the Boston Common Lighting Restoration Project provided an opportunity to excavate a number of one-meter by one-meter test pits on the locations of future lamp posts (Pendery 1988). All of these projects indicate that significant archaeological sites are still likely to be found within the Common.

The Pipe-Cable survey produced a quartz small-stemmed point preform, a Saugus jasper core, and several flakes in disturbed or isolated contexts. A test pit excavated next to the small-stemmed point had a lens of oyster shells at 120-132 cm in a dark matrix. This could indicate the presence of a shell midden (Jones and Seasholes 1986). Since a few historic artifacts were found below this deposit, the feature was either historic in origin, or heavily disturbed. No
prehistoric artifacts were found in the test pit. The other shell middens discussed in this report are comprised almost exclusively of soft-shell clam.

As part of the Boston Common Lighting Restoration Project, the Common was divided into 'blocks', the grass and tree-filled areas enclosed by existing walkways. Pendery conducted excavations in areas within these blocks believed to be archaeologically sensitive. The Frog Pond Site is located in Blocks 27, 45, and 30; the Block 79 site is located in Block 79. Block 27 is located north of the Frog Pond, and Block 79 is located near the SE corner of the Common between the Parkman bandstand and the Boylston MBTA station. Most recently, Cherau and Heiteret (2004) completed a comprehensive review of Boston Common's archaeological sensitivity.

Artifact Analysis

The Frog Pond and Block 79 collections consist of a wide variety of artifacts including finished stone tools, flakes, pottery, shell and bone. Each artifact was washed, dried, measured, and catalogued. The lithic and pottery remains from these sites are discussed here. While faunal remains, including well-preserved bone were recovered, their analysis was outside the scope of this project. A complete artifact catalogue is included in Bagley (2006).

Lithics. At the Frog Pond site, all stages of stone tool production were present from core reduction to finished points. Figure 3.1 illustrates a typical preform found at the Frog Pond site, one made from gray argillite. It exhibits the large, rough flaking characteristic of the early stages of biface reduction. The preforms from the site were made predominately of argillite and coarse rhyolite. Several more refined bifaces were recovered including a stemmed point that exhibits

Figure 3. Representative artifacts of the Frog Pond site. 1, Argillite biface preform. 2, Weathered rhyolite Neville-like point base. 3, Quartzite biface tip with missing base. 4, Quartzite or rhyolite Levanna point. 5, Yellow jasper spoke shave. 6, Rhyolite drill. 7, Possible basalt carving. 8, Sandstone abrader with iron staining. 9, Burned Pennsylvania jasper pressure flake. 10, Pennsylvania jasper blade. 11, Coarse blue rhyolite flake. 12, Quartz flake. 13, Hornfels blade. 14, Argillite flake. 15, Quartzite flake. 16, Rhyolite flake. 17, Fabric impressed Middle Woodland pottery sherd. 18, Cord wrapped stick decorated sherd. 19, Fabric impressed potter sherd. (Photo by author)
Frog Pond site. Archaeologists recovered large, probably hard-hammer, flakes exhibiting thick cross sections and relatively large platforms like the example seen in Figure 3.11. Thinner flakes with small platforms and feathered edges (Figure 3.10, 12-13) were likely produced during the thinning process of biface production using a soft hammer such as antler. A few flakes may have been produced through pressure flaking due to their narrow, thin shape and tiny platform (Figure 3.9).

The Block 79 site had significantly fewer lithic artifacts. Only one biface was recovered (Figure 4.1). It is a large thin rhyolite point with good flaking and fine retouching. It has undergone very little weathering, but a recent break shows that the interior of the stone is a bit darker than the exterior. Damage to the base makes it difficult to place the point within a typological group. Although its broad, excursive blade is Adena-like (Early Woodland), this point remains untyped. Only two flakes were recovered from the Block 79 site. Both appear to be fine-grained rhyolite and were likely made with a soft hammer (Figure 4.2).

The narrow stem, right-angled shoulders, and concave base typical of Neville-like points (Figure 3.2). This Neville-like point is made from weathered rhyolite and has fine retouch along its edges. It likely broke in antiquity due to the consistent patina on the flaked and broken surfaces. The distal end of a second point of blue-black quartzite (Figure 3.3) was also found, but the broken base does not allow for typological classification. A small, nearly equilateral triangular point with a concave base and made of fine-grained quartzite (Figure 3.4) was located in a different "Block" just east of the Frog Pond site. Its tip shows evidence of damage and possible re-sharpening. Typologically, it falls within the size classifications of a Large Triangle, or Levanna point (Johnson et al. 1984).

A well-made drill of fine grain blue rhyolite, possibly Kineo or Melrose Green rhyolite, with tiny clear phenocrysts (Figure 3.6) was found near the Frog Pond site. Its tip and one shoulder were damaged. The overall shape with straight-sided shoulder, concave base, sloped sides and narrow shaft are difficult to interpret. It is possible that the drill may have begun as a projectile point such as a Jacks Reef or Woodland lanceolate point that was then reworked into a drill.

A yellow jasper spoke shave (Figure 3.5) was also identified from the Frog Pond collection. The unifacial tool was made from a small cobble with pale yellow-gray cortex from which one a large flake was removed. Retouching along the crescent-shaped flake scar produced a steep-edged scraper that may have been used as a spoke shave or for some other scraping purpose.

Numerous flakes (or debitage) and a small sandstone abrading stone indicate that stone tool production occurred at the Frog Pond site. Often flint knappers used abrading stone to strengthen and dull a tool's edge prior to hafting or to facilitate the removal of flakes. The parallel gouges in the artifacts illustrated in Figure 3.7-8 may indicate sandstone abraders. Twenty-seven flakes were recovered from the Frog Pond site. Archaeologists recovered large, probably hard-hammer, flakes exhibiting thick cross sections and relatively large platforms like the example seen in Figure 3.11. Thinner flakes with small platforms and feathered edges (Figure 3.10, 12-13) were likely produced during the thinning process of biface production using a soft hammer such as antler. A few flakes may have been produced through pressure flaking due to their narrow, thin shape and tiny platform (Figure 3.9).

The Block 79 site had significantly fewer lithic artifacts. Only one biface was recovered (Figure 4.1). It is a large thin rhyolite point with good flaking and fine retouching. It has undergone very little weathering, but a recent break shows that the interior of the stone is a bit darker than the exterior. Damage to the base makes it difficult to place the point within a typological group. Although its broad, excursive blade is Adena-like (Early Woodland), this point remains untyped. Only two flakes were recovered from the Block 79 site. Both appear to be fine-grained rhyolite and were likely made with a soft hammer (Figure 4.2).

Figure 4. Representative artifacts of the Block 79 site. 1, Large untyped rhyolite biface. 2, Debitage from site. 3, Late Woodland Incised pottery sherd. 4, Fabric impressed Late Woodland pottery sherd. (Photo by author)
Lithic Discussion. The lithic artifacts of the Frog Pond and Block 79 sites show evidence of long-term use of Shawmut Peninsula, as far back as the Middle Archaic. The earliest component is represented by the Neville-like point, which dates to the Middle Archaic (8,000 to 6,500 BP). It was found in disturbed context above historical artifacts. This could indicate that a Middle Archaic component was disturbed during various land-altering events on the Common, or that a Middle Archaic point, possibly a curio, talisman, or item of personal adornment was deposited by later occupants. If it does represent an actual Middle Archaic occupation of Boston Common, it would make the Frog Pond site the oldest known site in mainland Boston.

A Neville point could function as a hafted knife, a spear point, or an atlatl dart point. Like many broken Neville-like points, this artifact is snapped across the blade. Its symmetrical shape, sharpened edges, and lack of use wear suggest it was used as a projectile point (Dincauze 1976). Recent excavations at the Annasnappet Pond site have shown the direct association of Neville-like points and atlatl weights further supporting their use as projectile points. The feature These artifacts were found in features that date between 8,580 and 8,005 years ago (Doucette 2005). Doucette also found evidence that people returned to their camp area with broken points and disposed of them there. Thus, the Frog Pond may have served as a small encampment during the Middle Archaic.

Other diagnostic lithics were recovered from the vicinity of the Frog Pond site indicate Woodland period use of the area. These include a Large Triangle or Levanna point, associated with the Late Woodland period (1,000 years ago to Contact). Small points such as this were likely used as arrowheads since they post-date the arrival of bow-and-arrow technology and are small and light enough to be hafted on an arrow shaft. The shape of the small drill could indicate an Early Woodland or Middle Woodland period component (Johnson et al. 1984), but this association is not certain. Another indication of Middle Woodland occupation is the presence of debitage, and perhaps the unifacial scraper, that appear to be Pennsylvania jasper. Exotic cherts, especially Pennsylvania jasper, are a hallmark of the Middle Woodland period (Luedtke 1987; Cherau and Heitert 2004; Spiess, personal communication 2006).

The debitage from the Frog Pond site show the use of local materials such as rhyolite, quartz, quartzite, argillite, hornfels, rhyolitic tuff, and slate. The fact that the preforms recovered from the Frog Pond site were made mostly from low-grade material and the more refined bifaces made from high-quality material is interesting. The better quality of the stone seen in the typological points likely made it easier to make more diagnostic tool forms that require fine retouch and other techniques made difficult or impossible with poor grade material. The crude “preforms” were likely rejected or used as-is because further reduction was impossible due to the quality of the stone. In this case, the flakes produced from the biface production were likely as useful as the preform itself. Regardless, it is clear from the debitage that both high and low grade lithic materials were being processed at the site.

Pottery. Thirty-seven sherds of pottery were recovered from the Frog Pond site, and 100 sherds from the Block 79 site. The Frog Pond site pottery consists of six vessel lots as determined by stratigraphic and horizontal location, decoration, temper type and other visible characteristics. Five types of pottery were recovered. These include: coarse grit-tempered ware with cord-wrapped stick decoration, coarse grit-tempered ware with no decoration, coarse shell and grit-tempered ware with fabric or net impressions, fine shell and grit-tempered ware with fabric impressions, and fine grit-tempered ware with no decoration.

Although the Block 79 site contained significantly more pottery fragments, they can only be divided into two, possibly three, lots. The first two lots consist of 99 small sherds of
very thin (4.49 mm) fine shell and grit-tempered pottery (Figure 4.3, 4.4). Some pieces exhibit incised markings; the largest sherd has two sets of parallel lines that meet to form a double “V” motif. There is also a shallow, faint punctuation just above the intersection of the V. This sherd has no curvature indicating that it may have come from a square-collared vessel, however, no rim sherds were recovered. These two lots come from different excavation units, and while their individual averages differ by only .5mm, it is likely that two different, but very similar vessels are represented. One sherd has a rounded shape and evidence of fabric or organic paddling. This is interpreted as part of the base of a globular-shaped vessel. Finally, one piece of pottery - with a fine, eroded shell temper, greater thickness, and lighter color (not shown) - represents a third vessel lot at the Block 79 site.

Pottery Discussion. The six pottery lots of the Frog Pond site provide additional information about the time periods when the site was used. One lot consists of three sherds with large (~30% of the matrix) pieces of chalk-like, grit temper and no decoration. The overall lack of distinguishing characteristics makes it difficult to date these sherds more precisely. Other, more recognizable sherds include two lots totaling nine sherds with fine grit temper and smooth exterior and interior surfaces. These sherds are likely to date from the Early to Middle Woodland Period (2150-1350 BP) based on their temper and thickness (Petersen and Sanger 1991).

A single sherd of coarse, grit-tempered ware, 5 mm thick and decorated with cord-wrapped stick impressions (Figure 3.18) probably represents a late Middle Woodland (1350-950 BP) component of the Frog Pond site, based on the lack of shell temper in the sherd. Later ceramics often are decorated with cord-wrapped stick impressions, but usually have shell temper. A cast of the sherd revealed a Z twist, S spun cordage and the shallow linear impression of the stick or tool on which the cordage was wrapped around. This style of cordage is typical of coastal ceramics of all periods (Petersen and Sanger 1991).

The largest piece of pottery from the Frog Pond site is a thick (1.2 cm) sherd with a fabric impressed exterior and smoothed interior (Figure 3.17). Careful examination of these impressions reveals several details of the netting or fabric used. (Figure 5) A cast of these impressions shows fifteen warp strands and four weft strands. The warps are between 2 and 3 mm thick and individual fibers within the strands can be distinguished. The weft fibers are very thin (<1mm) and somewhat irregularly spaced, though this could be due to the gap between the weft strands allowing movement along the strands of the warp. It is possible that this may record a simple cord-wrapped paddle with several very thin strands crossing the paddle perpendicularly, and not a woven fabric. The cast also revealed the undulating form of the thick (14 mm)
coils of the vessel body in the “background” of the strands. Eleven other sherds representing two additional pottery lots also have fabric-impressed exteriors and smoothed interiors (Figure 3.19). Taken together, these three vessels lots probably date from the mid-Middle Woodland (1650-1350 BP) based on their coarse shell temper, fabric paddled exterior and smooth interior (Petersen and Sanger 1991).

The pottery of the Block 79 site consists of three pottery lots. Two of these vessel lots exhibit characteristics of pottery dating 650-400 BP including thin walls, incised decoration, evidence of globular vessel shape and fine shell temper (Petersen and Sanger 1991). These sherds post-date all the pottery from the Frog Pond site and suggest that the Block 79 site was inhabited after the Frog Pond site was abandoned.

Conclusions

The Frog Pond and Block 79 sites are rare examples of prehistoric sites that have survived in a heavily developed urban area. Although they have not escaped the effects of landscape modification, these sites serve as reminders of Boston’s “deep” history—one that extends well before its founding in 1630. The Frog Pond site suggests that Native people used the Shawmut peninsula as far back as the Middle Archaic period. Other lithics suggest ongoing use during the Late Archaic and Woodland periods. This is reinforced by the ceramic evidence. Pottery with cord-wrapped stick and fabric impressed decoration also indicate a Middle Woodland use of the Common while the thin, shell-tempered ware with incised decoration suggests a Late Woodland presence. Taken together with the evidence from the nearby Boylston Street Fishweirs, these sites argue for continual use of the area now known as Boston Common from the Middle Archaic to the present.

Acknowledgements

Many people deserve thanks for their help and support during this project. Curtis Runnels, my advisor and mentor for the original thesis provided tremendous guidance and support, and Mary Beaudry who edited an earlier draft and was a member of my defense committee. The amazing volunteers, interns, and lab assistants at the Boston City Archaeology Lab did the majority of the cleaning and sorting of the artifacts and made this project possible. Many thanks go to City Archaeologist Ellen Berkland for her unwavering support, contagious enthusiasm and providing lab space for the cataloguing and photographing of artifacts. The staff at the Massachusetts Historical Commission also was extremely helpful, especially Ed Bell and Leonard Loparto. Finally, the support and genuine interest of my friends, family, and future wife Jen has been extremely appreciated.

References

Bagley, Joseph M.
2006 Life on the Frog Pond: A Prehistory of Boston Common. On file at the Massachusetts Historical Commission

Beaudry, Mary C. and Tamara Wamsley

Cherau, Suzanne G and Kristen Heitert

Decima, Elena B. and Dena F. Dincauze
Dincauze, Dena
1976 The Neville Site: 8,000 Years at Amoskeag, Manchester, New Hampshire. Peabody Museum Monographs, No. 4, Cambridge, MA.

Doucette, Dianna L.

Johnson, Eric S., Thomas F. Mahlstedt, James W. Bradley, and Valerie A. Talmage
1984 Guide to Prehistoric Site Files and Artifact Classification System. Massachusetts Historical Commission, Boston, MA.

Johnson, Frederick
1942 The Boylston Street Fishweir. Papers of the Robert S. Peabody Foundation for Archaeology, Peabody Foundation. Andover, MA,

Jones, Donald G. and Nancy Seasholes

Kaye, Clifford A.

Krieger, Alex and David Cobb with Amy Turner

Luedtke, Barbara E.

Massachusetts Historical Commission
1982 Historic and Archaeological Resources of the Boston Area. Massachusetts Historical Commission, Boston, MA.

Pendery, Steven R.

Petersen, James B. and David Sanger

Seasholes, Nancy S.

Shertleff, Nathaniel
1872 A Topographical and Historical Description of Boston. Noyes, Shertleff, and Co., Boston, MA.

Simon, Brona G.
2001 Massachusetts Bay, Highway to the Past: The Archaeology of Boston’s Big Dig. Edited by Ann-Eliza Lewis. Massachusetts Historical Commission, Boston

Skehan, James W.

Whitehill, Walter Muir
**PaleoIndian Sites and Finds in the Lower Merrimac River Drainage**

James W. Bradley

**Introduction**

While a small number of PaleoIndian sites and isolated finds have been reported previously in Merrimack River Valley (Curran 1994; Spiess and Bradley 1996), several additional examples have come to light through recent fieldwork and the re-examination of older collections. Analysis of these materials indicates that PaleoIndian people used the Merrimac River as a corridor for movement to and from the interior over a broad span of time between ~13,000 and 10,000 years ago.

**Sites and Isolated Finds**

Concord River Drainage. Many PaleoIndian points have been reported from the Concord River and its tributaries, although little detailed information is available on most of these (Figure 1). In a recent survey of the Sudbury, Assabet and Concord drainage, Hoffman and Edwards report twenty-one locations from which PaleoIndian artifacts have been recovered. The vast majority of these are isolated finds on multi-component sites. While these finds are distributed through the drainage, two clusters emerge – one around Hoccomonco Pond and Cedar Swamp in Westborough, headwaters of the Assabet River, and the other around the confluence of the Assabet and Sudbury Rivers in Concord (2003:56, 59).

Additional details are available for a few of these finds. Duncan Ritchie reports the mid-section of a large fluted point made of an exotic lithic from Wayland Center. This piece was observed in a family collection during the early 1980s (Ritchie, personal communication, February 2007). Further downstream, Doug Jordan reported a “small and crude” fluted point from east side of the Concord River in West Bedford (19-MD-77), but provided no additional details (1960:80).

To date, only one example has been verified. This is a small point in the Adams Tolman collection (#2249) at the Concord Museum (Figure 2). It was found near the confluence of Dakin’s Brook and the Assabet River early in the last century (19-MD-94). This point is 45 mm in length, 24 mm wide and 4 mm. thick. The material is a slightly platy, dull red chert and probably originated from Munsungun, Maine. This point appears to have been fluted from a prepared, isolated platform (Folsom-style fluting). The flute on the obverse side ended in a step fracture approximately halfway down the piece; the flute on the reverse side extends off the tip. This style of fluting, along with its prominent, slightly flaring ears, places this point...
Figure 2. The Dakin’s Brook fluted point. Courtesy Concord Museum.

within the Mid-Paleo Michaud/Neponset category. Careful consideration of the way in which this point was made suggests that this was the original size and that it is not a reworked piece.

Several unfluted Late Paleo points have also been reported from the Concord drainage (Johnson and Mahlstedt 1982; 1984). These long, parallel-sided, finely flaked points have often been termed ‘Eden’ points (Hoffman 1991:11). Following the excavation of a dated, single component site in Maine, the Varney Farm, (Petersen et al 2000) and a clearer understanding that these points occur widely throughout the lower St. Lawrence drainage (Dumais 2000), we suggest that these distinctive points now be referred to as Ste. Anne/Varney points.

At least six examples have been found along the Concord and its tributaries. Johnson and Mahlstedt (1982:9) report three specimens in the Ben Smith collection at the Concord Museum. Two of these were described in detail by the late Fred Carty (field notes dated February 17, 1982). Both are basal fragments found near the confluence of the Assabet and Sudbury rivers (19-MD-105). One is 4.4 cm in length, 2 cm wide and .8 cm thick. It is made from black felsite with fine white phenocrysts, possibly from the Wakefield area. The second base is 3.4 cm in length, 2 cm wide and .8 cm thick. It is made from a tan to cream colored, heavily weathered felsite. Both points have battered, slightly convex bases. Another parallel-sided point was found in the Great Meadows area by Al Robichaud. This large, complete point is 14.2 cm long, 2.4 cm wide and 1 cm thick. It has a slightly irregular, squared-off base and is made from a fine-grained, highly siliceous gray quartzite of unknown origin (Figure 3a) A fourth reported example was found by Dale Farrell near Sawmill Brook in Concord (19-MD-81) but no additional details are available (Johnson and Mahlstedt 1984:13). Two other basal fragments have been found on the upper Sudbury River around Heard Pond (19-MD-207). Both are in the C. C. Ferguson collection at the Robbins Museum. These bases are made from a dark gray to black chert and are, respectively, 3.4 cm long, 2 cm wide and .5 cm thick, and 5 cm long, 2 cm wide and .4 cm thick.

Figure 3. Late PaleoIndian points from the Concord Drainage.
While all these examples lack the grace and delicacy of classic Ste. Anne/Varney points, such as the Rockingham, NH specimen (Figure 4), this may be a function of the lithic material used.

One final Late PaleoIndian point from Heard Pond deserves special mention. This point, also in the C. C. Ferguson collection at the Robbins Museum, has a thin, finely flaked triangular blade, small distinct side notches and a slightly concave base that has been thinned by a series of shallow flutes (Figure 3d). This point is 4.6 cm long, 2.1 cm wide at the base and .4 cm thick. It is made from a fine-grained, yellow-tan chert of unknown origin but visually similar to Normanskill chert from the Hudson Valley. Although very unusual in the Northeast, this piece fits the definition for a Hardaway Side-Notched point almost exactly (Coe 1964:67-68). Nor is this the only example that has been reported. A virtually identical base was found in a deeply buried context (level 8) at the Garvins Falls Site located on the upper Merrimack River near Concord, New Hampshire (Winter 1985:13, 15 figure 4m).

Merrimack River, Lowell. Sometime around 1900, George Sawtelle found an unusual PaleoIndian artifact on the north bank of the Merrimack below Pawtucket Falls in Lowell. This large bifacial, or backed knife, is in the collection of the Robert S. Peabody Museum in Andover, MA (#136/12957). The piece was found from the grounds of the former Lowell Textile Institute, now part of the UMASS, Lowell North campus (Figure 5). This implement was made from a single large flake that has been bifacially thinned and trimmed to shape. It weighs 69 g, is 9.3 cm in length, 5.2 cm wide and 1 cm thick. It is made from a dull red to maroon chert. With some evidence of varve-like banding, this material is visually identical to the Munsungun chert of the Norway Bluff outcrop in north central Maine.

This piece is unusual since most PaleoIndian implements, fluted points excepted, are unifacially worked. With the exception of a break on the proximal end (possibly the reason it was discarded), this biface shows retouch and edge use on all sides. Arthur Spiess has examined this piece in detail and generously provided the following description. He notes that there is extensive wear and dulling on both the ventral and dorsal surfaces suggesting that this tool was used over a period of time and may have been carried in a pouch. However, this wear does not extend onto the break surface, indicating that breakage occurred well into the use-life of the tool. The changes in edge outline adjacent to this break also suggest that this implement may have been hafted.

Spiess divides the utilized circumference of the edge into five segments:

1. Segment One extents 1.8 cm along the edge from the break and has been dulled...
Figure 5. The Sawtelle biface, Lowell. Courtesy R. S. Peabody Museum.

by crushing. It is slightly concave and follows the contour of the original flake. This concavity may have served as a notch for hafting.

2. Segment Two extents along the next 5 cm of edge. This section has been carefully trimmed and regularized to a 45° through a series of evenly spaced flake removals on the dorsal surface. This is the ‘backed’ portion of the cutting edge. Subsequent use has resulted in crushing and small step fractures that have dulled the edge.

3. Segment Three extends for 3 cm in a graceful arc that forms half of the tool’s distal end. This portion also shows deliberate thinning of high spots as well as retouching of the edge. Here, too, the edge has been dulled from use.

4. Segment Four begins with a notch at the distal end’s midpoint. From here, the edge follows a sharper, slightly protuberant arc that forms the other half of the tool’s distal end. The edge then continues another 8 cm back towards the break in the proximal end. This portion of the edge has been shaped by thinning flakes on both the dorsal and ventral sides and regularized through retouched to a lower angle, roughly 30°. The wear on this portion of the edge appears to be bifacial with small step fractures of 50% of the dorsal surface and 20% of the ventral surface. There is also a noticeable polish or sheen extending back 1 mm or so from the edge and further on the flake arrises. Spiess interprets this wear as evidence of back-and-forth cutting motion on a relatively soft material.

5. Segment Five continues the edge back to the break in the proximal end. While it continues the same general edge angle as Segment Four, additional retouch has steepened the edge angle and slightly notched this portion of the tool, again suggesting a haft.

Clearly, this is a complex tool, probably intended for more than one purpose and certainly used over a period of time. Although infrequent, similar examples have been reported from other PaleoIndian sites in the Northeast. These include the Michaud site in Maine (Spiess and Wilson 1987:62, Plate 3.9) and several Mid-Paleo sites in southern Ontario such as Fisher (Storck 1997:65, 75 Plate 3.11), Thetford II (Deller and Ellis 1992:50, 53 Figure 44) and Parkhill (Ellis and Deller 2000:93, Figure 5.16). Spiess also observes that these carefully shaped implements were designed to fit comfortably in the hand. This, plus the edge wear evidence, suggests that these tools were used for butchering and otherwise processing materials such as meat and soft hides. While it is not possible to date the Lowell specimen, it is interesting to note that nearly all the comparable examples have been recovered from Parkhill Phase, or Mid PaleoIndian, sites.

Rogers Brook, Andover. Two small Paleo-Indian implements were found by Arthur Petzold at the Rogers Brook site in Andover (19-ES-106) during excavations in the 1950s. One is a spurred endscraper (#93.31.23), the other a broken limace or flakeshaver (#93.31.24). (Figure 6, next page) Both are in the collection of the Robert S. Peabody Museum.
The endscraper is a classic example of a typical PaleoIndian tool. It is unifacial, roughly triangular in shape and has graving spurs on both the right and left distal corners. It is 3.2 cm in length, 3.1 cm wide at its broadest point (between the graving spurs) and .9 cm thick. It is made from a rather coarse, dark gray felsite with sparse dark phenocrysts. Although similar to examples from Mt. Jasper, NH, this material more closely matches outcrops of felsites from the nearby Newbury series. This endscraper was made on a flake chosen for the central ridge on the dorsal side formed by prior flake removals. A small patch of cortex remains on the dorsal surface. The ventral surface is flat. The distal end has been retouched to give the edge a 75° angle. Roughly 50% of this edge has been undercut by step flaking that dulled the tool. It appears to have been discarded rather than re-sharpened. Spiess' examination of this tool suggests that the graving spurs were made as an integral part of the tool and were not an artifact of re-sharpening.

The second piece is the distal end of a narrow endscraper made from a channel flake. These distinctive tools, often described as limaces or flakeshavers, have been recovered from several other Early PaleoIndian sites in the region including Bull Brook, Whipple and Vail (Grimes and Grimes 1985). This piece is only 2.27 cm in length, 1.7 cm wide and .45 cm thick. It is made from an unusual material - waxy textured, slightly brecciated blood red agate or chalcedony. The most likely source of this material is the Minas Basin at the eastern end of the Gulf of Maine. This tool appears to have been made from the proximal end of a large channel flake, the original beveled striking platform being reworked into a scraping edge with nearly a 90° angle. This edge shows extensive undercutting and crushing as a result of use. This, plus its fragmentary condition, suggests that this tool was discarded at the end of its useful life. Like the backed knife from Lowell, this piece also shows extensive wear and polish on its dorsal surface, suggesting that it had been carried a long ways.

Merrimack River, Lawrence. During an intensive locational survey on the south side of the Merrimack River in Lawrence, the Public Archaeology Lab, Inc. recovered a small amount of deeply buried material that appeared to be of PaleoIndian origin (Ingham and Ritchie 2001). Although extensively disturbed during historic times, the Memorial Park 2 site is an ideal location - a broad sandy outwash terrace near the confluence of the Shawsheen and Merrimack Rivers. Most of the material recovered was lithic debitage, primarily a blue and gray banded chert visually identical to the Munsungun chert of north central Maine. Other lithics include regional felsites (from the Newbury series) and Saugus jasper. Only a small number of tools were found, all made from chert. With the exception of one biface, all were unifacial. These include four small gravers, fragments of at least two large side scrapers and one end scraper. The single biface has a triangular shape with a well-finished concave base and slightly serrated edges. Although no fluting is evident, the excavators concluded that this point has many similarities to those of the Late PaleoIndian Dalton tradition. A more complete report on this site is in preparation (Waller and Ritchie nd).

Georgetown. A more typical PaleoIndian assemblage was recovered in nearby Georgetown by Warren K. Moorehead. It is comprised
of five tools all collected on behalf of the R. S. Peabody Museum and labeled "Merrimac Valley near Georgetown, Mass". These include two unifacial scrapers made from thin flakes of a flow-banded rhyolite identical to that from Mt. Jasper, New Hampshire. One (#28516) has a typical asymmetric, ear-like shape and is 7.8 cm long, 3.6 cm wide and .9 cm thick. The second (#28518) is the distal end of a similarly shaped uniface, 5.7 cm long, 4.6 cm wide and .6 cm thick. The third uniface (#28544) has a carefully flaked, thick, domed-like shape. Its ovate unifacial surface is 4.2 cm long by 3.7 cm wide across. This specimen is 1 cm thick and made of blue and gray banded Munsungun chert. The final uniface is a small irregular flake of Saugus jasper (#28549). It is 4.3 cm long, 3 cm wide, .7 cm thick and has a carefully rounded worked edge on one end and a graving spur on the other. The final specimen is a small piece of crystal quartz (#41760) 2 cm long by 1.5 cm wide and .5 cm thick, that appears to have been used as a piece esquillée (Figure 7). Unfortunately no additional information is available on where these pieces were found. Although it is not possible to date this assemblage on stylistic grounds, it is worth noting that all these forms, and lithic materials, are well represented at the Early PaleoIndian Bull Brook site only twelve kilometers away (Pelletier and Robinson 2005).

While Paisley’s collection from the site
contained a wide range of stone tools, it was the small fluted point that attracted attention. Stoddard noted that it was “made of material similar to that seen in the Bull Brook collections”. Bill Eldridge, who has seen the point, said that the material was a gray chert, that this point had been heavily reworked and showed evidence of fire damage (Eldridge, personal communication, March 1997). While the current location of this point is unknown, Stoddard’s photograph confirms Eldridge’s description (Figure 8). The point appears to be a re-tipped base roughly 3.5 cm in length and 2 cm wide. The obverse side has a single broad flute and the remnant of a basal ear of the left side. Fluting on the reverse is obscured by large pot lid fractures. These were apparently produced by the heating event that shattered the point’s base. Given this damage, it is difficult to identify this point typologically, however, it shares many traits with the nearby Bull Brook site and could easily fit within that assemblage.

Discussion

While few of these artifacts are diagnostic in and of themselves, taken together, they help to build an increasingly detailed picture of the Merrimack drainage between ~13,000 and 10,000 years ago. What they suggest is a pattern of repeated, possibly continuous, use of throughout the PaleoIndian period.

At present, there is no evidence of the earliest people in the region. No true Clovis points have been found or other artifacts diagnostic of the period ~13,000 to 12,600 years ago. These include large Gainey-style points, such as those from the Whipple site, as well as similar points from the Vail site in western Maine with their characteristic deeply indented bases. By contrast, the later portion of the Early PaleoIndian period, between ~12,600 to 12,000, is well represented. Although this period is dominated by the Bull Brook site in Ipswich, the presence of similar assemblages in Georgetown, West Boxford, along the Shawsheen and at Shattuck Farm indicate that Bull Brook was part of a much larger regional concentration of sites. The presence of Munsungun chert and Israel River/Mt. Jasper rhyolite on these sites also suggests that the Merrimack served as a corridor through which these lithics were acquired and used.

While sites from the Mid-PaleoIndian period, between ~12,000 and 11,600 years ago, are less well represented, the Michaud/Neponset style point from Dakin’s Farm indicates that they are there. The large backed knife from Lowell also appears to be a Parkhill-related tool form. The presence of a Crowfield point provides evidence for a late Mid-PaleoIndian presence (Spiess and Bradley 1996).

Another gap appears to occur after the end of the Younger Dryas climatic episode 11,600 years ago (Newby et al. 2005). At present, no Holcombe or Agate Basin-related points, those most closely related to the Pleistocene-Holocene transition, have been reported from the lower Merrimack. However, by Late PaleoIndian times, between ~11,000 and 10,000 years ago, there is again considerable evidence for people who used different lithic traditions. Parallel-sided Ste. Anne/Varney points appear well established along the Concord River while points reflecting the Dalton and Hardaway
traditions are also present. In contrast to the earlier PaleoIndian assemblages with their predominance of non-local lithics, the Late PaleoIndian finds and assemblages show a preference for regional felsites.

In conclusion, while these small assemblages and isolated finds may not seem important, they are essential building blocks for reconstructing how PaleoIndian peoples operated within the region. The more we can identify these artifacts, whether in old collections or in current field work, and get them into the published record, the better our understanding will be.

Acknowledgements

My thanks to Arthur E. Spiess and Jeff Boudreau for their detailed comments of several of these artifacts and to Shirley Blancke, Bill Eldridge, Curt Hoffman, Stephen Pollock, Duncan Ritchie, Al Robichaud and Jay Waller for their assistance and observations. My thanks also to the Concord Museum, the New York State Museum and the Robert S. Peabody Museum for permission to publish photographs of artifacts from their collection.

References

Coe, Joffre

Curran, Mary Lou

Deller, D. Brain and Chris Ellis

Dumais, Pierre

Ellis, Christopher and D. Brian Deller

Grimes, John R. and Beth G. Grimes

Hoffman, Curtiss

Hoffman, Curtiss and Adrienne Edwards
2003 *The SUASCO Watershed Archaeological Inventory Project: Exploring the Cultural Resources of a Suburban Area*. Bridgewater State College, Bridgewater, MA
Ingham, Donna and Duncan Ritchie  

Johnson, Eric and Thomas Mahlstedt  
1982 The Ben Smith collection. State Survey report, Massachusetts Historical Commission, Boston, MA.  
1984 The Dale Farrell collection. State Survey report, Massachusetts Historical Commission, Boston, MA.

Jordan, Douglas F.  

Newby, Paige, James Bradley, Arthur Spiess, Bryan Shuman and Phillip Leduc  

Pelletier, Bertrand G. and Brian S. Robinson  

Petersen, James B., Robert N. Bartone, and Belinda Cox  

Spiess, Arthur E. and James W. Bradley  

Spiess, Arthur E. and Deborah B. Wilson  

Storck, Peter L.  

Waller, Joseph N. Jr. and Duncan Ritchie  
2007 The Memorial Park Locus 2 PaleoIndian Site in Northeastern Massachusetts. Manuscript report, Public Archaeology Lab, Inc. Pawtucket, RI.

Winter, Eugene  
A Preliminary Report on the McWade Site:  
A Riverside Site on Massachusetts Bay

Jeff Boudreau and Mike McWade

Introduction

In this preliminary report, it is the authors’ intention to offer a limited overview of the newly discovered McWade site. For obvious reasons, the location of the site is being withheld. However, that information will be provided to any professional or qualified student who wishes to conduct research there. The factual information presented here consists of the site’s setting, the stratigraphic position of the occupation zone, and a summary of the recovered artifacts, all of which are surface finds. Sea level rise has altered the appearance of the site significantly. As much as 7,500 square meters of the site’s frontage are estimated to have disappeared into the river’s currents. This article presents initial hypotheses on the site’s possible uses and how it may have appeared at the time of occupation.

Location and Discovery

The McWade Site, located on the south side of Massachusetts Bay, is situated in a salt marsh on the edge of a shallow river embayment. The head of this bay formed around a sharp bend in the river channel. The marsh, which surrounds the bend, shows the effects of frequent head of the tide surges; these have broadened the original river channel considerably. Here, the river flows around and defines the western limits of the site. Across the river from the site, a rock outcrop deflects the river channel from its northerly flow, back toward the Atlantic. After the bay was formed, the erosive effects of river currents, especially during the rising and falling of the tides, exposed the site. In late winter, the damage caused by floe ice can be dramatic. The site, accessible only at low tide, was discovered by Mike McWade, an artist and

Figure 1. An approximation of the McWade site plan. Distances estimated.

Copyright © 2007 Jeff Boudreau and Mike McWade
naturalist. He had previously walked over, and past, this site on a number of occasions in pursuit of these interests. However, in 1992, while walking over the area, he noticed a scatter of debitage along the low tide beach. A fortuitous combination of tides had washed silt off the sand and gravel beach leaving the artifacts exposed. The area of occupation, with four apparent loci, extends approximately 85 meters along the river’s edge (Figure 1). On that day in 1992, the narrow beach spanned the entire length of the site. Since then, erosion has altered the site considerably. Today, the western end of the site projects out into the high-water current and presents a narrow beach at low tide. Immediately east of this point, the current forms an eddy that has created a shallow cove. Within this cove, all traces of the low tide beach are silted over. The depth of this accumulation is unknown, but it is sufficient to provide habitat for soft-shelled clams. Today, the only artifacts recovered from this area are those that erode out from the base of the embankment or are inadvertently brought to the surface by clam diggers. For some reason, these artifacts have not been recognized by the clam diggers. No doubt, they sense the difference between a clam and a rock on their rake tines. After being brought to the surface, it takes an unknown, but considerable, amount of time for an artifact to be washed free of mud; only then does it become visible.

The process by which portions of the embankment that contain artifacts is undercut and eventually collapses is whimsical and depends on a combination of tides, ice and storm surges. At times, the beach at locus 1 is completely silted over; at other times it is clean, with artifacts exposed. Around 1995, erosion of the embankment accelerated as large sections began to calve off. These sections can take several years to completely erode away. Meanwhile surface collecting in that area is not possible. Since its discovery, an estimated 2.5 to 3.5 meters of the bank along the site’s western edge have been lost.

At low tide, the bank profile is approximately 1.2 meters high above its juncture with the beach (Figure 2). The thicker, uppermost layers appear to be a succession of distinct, episodic accumulations of peat and rotted vegetation. Below the peat layers is a dark, narrow band 2.5 to 3 cm thick. Below this band is a basal layer of beach sand mixed with numerous rounded, polished pebbles that is at least approximately 34 cm deep. The evidence for rootlets in this beach sand suggests that it is still an active soil horizon. All the artifacts that have been found in situ have come from this sand level. They
occur at various levels throughout this layer with no apparent stratigraphic position. To date, no evidence of charcoal, shell or other indications of a midden have been observed. Nor have any features been seen. Since no excavation has been undertaken, it is not possible to say how deep the sand level is or what may lie beneath it.

**The Assemblage**

Since its discovery, McWade has regularly walked the site, collecting exposed artifacts and recording his finds. His visits are timed to avoid arousing interest from fishermen or clam diggers. To date, a less than exhaustive, but more than cursory, examination of the entire assemblage has been completed.

Most significant are thirty-seven stemmed projectile points and tips. Of those, twenty-eight are Neville Variants. Several others are ambiguous due to stem/basal damage. One of these ambiguous points (broken and cross-mended) appears to have damage in the center of the base; this makes it appear to be a Neville with a slightly indented base. Another point has damage on a corner of the base which makes it look like a Stark point. One other point shows an incomplete attempt to rebase a broken point. In our opinion, these points are not reworked Nevilles. A final five of the thirty-seven points found would be classified as small-stemmed (Figure 3).

In addition to finished projectile points, the McWade assemblage contains a large number of other bifacial tools. These include more than 180 bifaces (including fragments) in various stages of production. Several of these are knives. Figure 4, next page, illustrates a series of these stemless, bifacial knives. Four large argillite side scrapers have also been recovered. Two of these are illustrated in Figure 5. Three other large sandstone scrapers and two small quartz scrapers are shown in Figure 6. Three drill fragments have been recovered. Two have expanded bases and were made from large flakes; the third is a reworked projectile point (Figure 6). Other chipped stone tools include utilized flakes and flake knives.

The lithic composition of this assemblage is, overwhelmingly, argillite. Local porphyritic and banded rhyolites are represented by 30 pieces. Of these, twelve are points, or point fragments, three are drill fragments, two are bifacial knives and the rest are biface fragments or flakes. In

*Figure 3. Projectile points from the McWade site.*
addition, there were twelve quartz tools. These include three small-stemmed points, two end scrapers, one biface fragment with the balance being ‘chunks’. A large quantity of debitage has also been recovered. Although this has yet to be fully analyzed, it tells the same story. The vast majority is argillite (5.4 kg), probably from a local source. Smaller quantities of local rhyolites (.62 kg) and quartz (.63 kg) are also present.

Ground stone tools are also well represented in the McWade assemblage. These include four hammerstones/pecking stones, two plummets (one broken but classic example; the other circular rather than elongated), one large grooved net sinker, two gouges (one finished but broken; one in process and broken), one celt, and a broken pestle. Of particular interest is a small winged atlatl weight that has been partially completed. Perhaps it was discarded since the holes, partially drilled from each end, are misaligned. This piece and several of the other ground stone tools mentioned above are illustrated in Figure 7. Another possible early stage perform for a similar winged atlatl weight has also found. Finally, the recovery of a European clay pipe bowl indicates that some later material is also present on the site.

During examination, we noted that nearly every flaked tool, including the points, drills, broken bifaces and large flakes, displayed cutting polish on the edges (It should be noted that this observation needs to be substantiated by a qualified use-wear analyst.) This was a surprise to us and it is unclear whether this indicates that a particular, specialized activity, such as fish processing, took place at this site. Many of the biface fragments usually interpreted as projectile point performs could also have been used as bifacial knives. In fact, many of these are consistent with Dincauze's description of broken preforms at the Neville site (Dincauze 1976). Interestingly, at the Neville site, this class of artifacts was interpreted as manufacturing waste because of a lack of use-wear.

One Occupation or More?

The McWade site assemblage raises questions. One is the presence of the small-stemmed points. Were they part of the Neville Variant assemblage, intrusive from a later occupation or merely later objects lost at the site? They may be intrusive, but it should be noted that several of the small-stemmed points have bases, or haft elements, consistent with the Neville Variants from the site (Figure 8, page 26).
Based on projectile points, with the possible exception of the small-stemmed points, we believe this assemblage represents a single component, Middle Archaic occupation. Yes, it may have been a multi-component site. The presence of a pestle and celt may be evidence for a Late Archaic, or later, occupation (Hoffman 1991). The recovery of the pipe bowl certainly demonstrates that later people have used the area. Even today, the site remains a popular spot to fish for striped bass during in late spring and early summer. Undoubtedly, contemporary fishing tackle, now resting upon the riverbed, is now in the archaeological record. However, if this site was truly multi-component, it seems odd that, given the number of points found, no indubitable, diagnostic points from later periods have been recovered. Whether the McWade site is a single component Middle Archaic site or the vestige of a multi-component site may never be known.

What is clear is how dramatically the site area has changed since its primary occupation. The predominance of the Neville Variant points suggests an occupation between 6,000 and 7,000 years ago. At that time in southern New England, sea level was about 13 m (42.6 feet) below today’s level (Donnelly 1998). When the McWade site assemblage was deposited, the site was well above the tidal zone. What might the site, and the river in front of it, have looked like 7,000 years ago? If one travels a short distance upstream, the river narrows considerably. Here the river is only 10 m wide and is bounded by steep vertical banks that look similar to those at the site. At the time of the Neville-related occupation, the river was fresh water, perhaps only 10 m wide, and actively cutting down through a flat, sandy plain towards a much

**Figure 6.** Drills and scrapers

**Figure 7.** Atlatl weight, adz, celt and classic plummet
lower Massachusetts Bay. Today, the river channel in front of the site is roughly 100 m wide.

We believe the site was selected as an advantageous location to harvest fish, especially during seasonal runs. The cutting polish is interpreted as the result of processing large quantities of fish. Given the extent of polish on nearly all the chipped stone tools, it appears that virtually every available edge was used. We view the projectile points as evidence for the hunting of competing land and sea-based predators who were also attracted to the fish runs. The scrapers, if used in hide preparation, would add weight to this view. Other activities performed at the site included the production of flaked stone tools along with pecked and polished stone tools. The gouges, celt and drills infer wood working at the site. However, since some of these implements are broken, this may be evidence of their manufacture there. Drills appears to have been used and broken at the site. Use-wear analysis may be able to determine what was being drilled.

Many questions remain unanswered. Have the currents in the river and tidal zone moved the artifacts into the concentrations seen on the low tide beach, or do these clusters reflect actual deposition as artifacts erode from the site? A concentration of scraper found in locus 3 suggests the latter. It also remains unclear what still lies below the visible portions of the site. There may well be a consistent scatter of artifacts beneath the mudflat all across the entire site. The fact that clam diggers continue to bring artifacts to the surface suggests that much still remains below the surface of the mudflat. After spending many years studying the site, McWade believes that this is the case.

**Conclusion**

This is an important and intriguing site. To our knowledge, no other single component, Neville Variant site has been reported in Massachusetts or elsewhere in New England. It would certainly be interesting to learn more about why this site appears to have been occupied only during this time period. Is it possible to date this site? Why and when was it abandoned? Did changes in climate conditions or sea level rise make other site locations more attractive? Are there other, similar sites in the vicinity or is this site unique? We plan to continue exploring these questions and hope that other qualified colleagues will join us as we work to understand the McWade site story further.
References

Dincauze, D. F.

Donnelly, J. P.

Hoffman, C.
Additional Information on Late Archaic Caches in Essex County, MA

Eugene Winter

Introduction

In the previous issue of the Bulletin, I reported on an Atlantic phase cremation feature excavated during the 1950s at the Call Site in Billerica, MA. Since then, a charcoal sample from the base of that feature has been radiocarbon dated to 3,570 years ago. This sample is discussed in greater detail along with information on two previously unreported caches of Susquehanna-related bifaces, one in Middleton, the other in Ipswich, and a third previously reported cache also from Ipswich (Hadlock 1948).

An Update on Feature 14 at the Call Site

In the process of writing up the story of Feature 14, an Atlantic phase cremation, for the previous Bulletin (Winter 2006), I discovered a charcoal sample that I had saved from the base of the feature (at a depth of 34 inches) during Brennon’s excavation. With the generous assistance of Dr. Arthur Spiess, staff archaeologist at the Maine Historic Preservation Commission, this sample was submitted to Nancy Sidell for identification of the charcoal. Her report indicated that 1.82 grams of charcoal were present. Of the 94 pieces larger than 2 mm present, 66 (70%) were wood and 28 (30%) were bark. Identification of wood species was possible for 20 pieces; 12 (60%) were hickory (Carya spp.), 4 (20%) were white oak (Quercus spp.) and the remaining 4 (20%) were spruce (Picea spp.) A sample of the hickory charcoal was submitted to Beta Analytic, Inc for radiocarbon dating. This sample returned a conventional radiocarbon age of 3,340±50 BP (Beta-226316). Calibrating this to calendar years, this sample dated 3,570 years ago. While this date is younger than Dincauze’s estimate of ~4,100 to 3,600 years ago for the Atlantic phase (Dincauze 1972:57), Feature 14 now stands as the best dated, single component Atlantic feature yet reported in Massachusetts.

Two Additional Caches from Essex County

Caches are an important part of archaeological record because they often contain either a single type of artifact, or a series of related objects in the process of manufacture. The two caches discussed here were found in Middleton and Ipswich. They contained similar artifacts and are compared with a third cache of similar bifaces found on the upper reaches of Bull Brook in nearby Ipswich. This cache, known as the Nourse cache, was previously reported by Wendall Hadlock (1948) and Howard Jones (1949).

The Curtis Cache, Middleton. The Curtis cache was discovered by Arthur Curtis while plowing his land adjacent to Boston Brook near its confluence with the Ipswich River. As he related to me, he was watching the plow blade when he saw “a few spear points” turn up. He stopped the tractor to retrieve these implements and discovered that several others were present just below where the plow had cut. In all, he collected seventeen large bifaces that apparently had been cached in a shallow pit (Figure 1, next page). Mr. Curtis invited me to excavate a unit where he found these bifaces in case something survived below the plow zone. I did test the area but determined that, between plowing and Curtis’ digging to remove the additional pieces, all evidence of the feature had been destroyed.

The seventeen bifaces from the cache can be divided into two groups on the basis of their...
degree of completion. Numbers 2, 4, 5, 6 and 7 all appear to be nearly or completely finished implements. The remaining examples appear to be partially completed. All seventeen examples show little, if any, evidence of weathering. However, many of the ridges between the flake scars show a degree of polish or wear suggesting that these bifaces may have been carried in a pack or pouch.

All seventeen bifaces appear to have been made from large spalls of Marblehead felsite. Four of these were made on spalls with a definite twist. The major thinning flakes were driven off at right angles from the edge of these bifaces leaving a pattern of thin, narrow, slightly expanding flake scars. Six of these bifaces have stems, however, they are not identical. Four examples (#2, 5, 6, 7) are parallel-sided with a straight base. These appear to be Atlantic points. The other two stemmed examples (#3, 4) have slightly tapered sides and a round base. Stem width ranges from 1.8 to 2 cm while stem length ranges from 1.2 to 1.4 cm. The incomplete specimens have roughly ovate bases. Some pieces show more evidence of finishing than others. For example, #8 has carefully finished corners and appears to be a typical Mansion Inn blade. The base of #11 has a vertical nick that appears to be the result of plow damage. For all their differences, these bifaces are remarkably similar. As a group, they range in length between 7.2 and 9.9 cm with a mean of 8 cm. In width, they range between 3.6 and 5.3 cm with a mean of 4.3 cm. In thickness, they range between .9 and 1.3 cm with an average of 1.1 cm.
Archaic biface, could be made. Jeff Boudreau suggests that, with their tapered stems and clearly defined corners, Boats blades may have been the intended result for many of these preforms.

As with the Curtis cache, all thirty-two specimens in the Mansfield cache appear to be large spalls of Marblehead felsite. These are rough bifaces at best. As Jeff Boudreau observed, they appear to be a whole reduction cycle behind the more finished bifaces of the Curtis cache. The specimens in the Mansfield cache also vary more in the dimensions. As a group, they range in length between 5.4 and 10.5 cm with a mean of 7.3 cm. In width, they range between 3.4 and 6.7 cm with a mean of 4.6 cm. Most are approximately 1 cm thick.

The Nourse Cache, Ipswich. The Nourse cache was first reported by Wendell Hadlock in 1947. Although he was unable to ascertain the age and cultural affiliation of this cache, Hadlock was able to reconstruct where it had been found and make initial comparisons with similar caches from Maine (Hadlock 1948). He also provided measurements for the thirty-four large bifaces in the cache. As a group, they ranged between 10.5 and 17 cm in length with a mean of 13.8 cm. In width, they ranged between 5.2 and 7.2 cm with a mean of 6.2. Hadlock
Figure 4. Essex County area. A. Marblehead quarry, B. Curtis cache, C. Mansfield cache, D. Nourse cache. Map by Jeff Boudreau.

Discussion

All three caches appear to have been found in or in close proximity to known archaeological sites. While the caches themselves remain undated, their general similarity indicates that they are closely related in age. The presence of Atlantic points in the Curtis cache suggests that their age is comparable to that of Feature 14 at the Call site. While these caches represent the storage of surplus lithic material by skilled craftsmen, the purposes for which these bifaces were ultimately intended were varied. Functional tools, mortuary offerings, and implements as gifts or for trade with neighboring groups are some of the possibilities.

Although Native people have quarried the felsite outcrops in Marblehead since late PaleoIndian times, Atlantic phase people made extensive use of this material. Tools of Marblehead felsite are found throughout Essex County and well beyond. It is generally assumed that these caches were established at various locations along the coast as well as inland as part of a distribution system. The estimated thickness averaged 1 cm. A sample of fourteen bifaces from this cache was illustrated by Hadlock and is reproduced here (Figure 3) The following year, additional information on this cache surfaced. Jones reported that as many as forty-six bifaces had been recovered in 1886 and pinpointed the location more precisely — along the bank of the Egypt River in Ipswich very near the Rowley border. Jones also noted that a similar cache had been found in Marblehead and that these “roughed out artifacts” had probably been transported from the quarry to camp sites where the tools could be completed (Jones 1949). Although formal comparisons cannot be made without a careful re-analysis, it is interesting to note the overall similarity of the Nourse and Curtis caches. Both contain a comparable mix of stemmed and unstemmed bifaces. Although neither Hadlock nor Jones specified the lithic material used in the Nourse cache, it again appears to be Marblehead felsite.

While material could have been carried overland and cached, it is also possible that water transportation was used. All three of the caches discussed here were found in locations accessible by water (Figure 4). The route from the quarry might have been north from Marblehead to Cape Ann, through the marshes at the head of Gloucester harbor to the Annisquam River and on into the sheltered drainages of the Ipswich and Rowley Rivers. The distance from the Marblehead quarry to these three cache locations is not that great. The Curtis cache is 25 km from Marblehead; the Mansfield cache is about 30 km. The Nourse cache is the furthest at 35 km. My guess is that it would have taken longer to find and produce these bifaces than it would to carry them overland to the locations where they were found.
behind Plum Island or even up to the Merrimack.

Caches have the potential to tell us great deal about the people who made and used them. During the Terminal Archaic, caches often contain a wide range of lithic material, from the cherts of the Hudson Valley to the distinctive felsite of Mt. Kineo in Maine. If we can continue to document these caches and the distribution of the lithic materials they contain, we will have a better basis for understanding the complex movement of people, material and ideas during this dynamic time.

Acknowledgements

I want to thank Art Spiess and Nancy Sidell for their assistance in identifying the wood charcoal from Feature 14 and in obtaining a radiocarbon date. My thanks to Arthur Curtis and Mrs. Oquina Mansfield for allowing me to study the caches they discovered. Thanks also to Jeff Boudreau for his fine photography and to the Robert S. Peabody Museum for permission to publish a photograph of the Curtis cache.

References

Dincauze, Dena F.

Hadlock, Wendall

Jones, Howard

Winter, Eugene
A Middle Woodland Burial at Seaver Farm, Bridgewater, MA

William B. Taylor

Introduction

A series of burials were salvaged at the Seaver Farm site (19-PL-162) in 1969. While most of these date from the Transitional Archaic (see Taylor 2006b), a few appeared to date from the Early or Middle Woodland Period based on the associated artifacts. Re-examination of the remains and funerary objects from Burial #6 provides important new information on late Middle Woodland use of this site. This includes a C-14 date of 1,390 years ago or AD 560.

Background

During the summer of 1969, the construction of several new houses along Beach Street in Bridgewater disturbed several portions of the old Seaver Farm, adjacent to the well-known Titicut site. As topsoil was removed to provide fill, several burials were exposed, especially along a 6 foot high embankment left by the mechanical loader. While examining this area on August 25th, I spotted the edge of a red ochre burial in this bank. A more complete report on this and other burials discovered at that time has already been published (Taylor 1970).

Burial #6

With the help of my two sons, we excavated this burial. Fortunately, the mechanical loader had only grazed one edge. The outline of the grave shaft was barely discernable in the upper level. However, towards the bottom, a faint grayish layer suggested that a lining of bark or other material may have been used. When completely exposed, the burial feature was an oval pit measuring 22 by 40 inches and extending 46 inches deep into the underlying white sand (Figure 1).

Figure 1. Plan and profile views of Burial 6, Seaver Farm

Copyright © 2007 William B. Taylor
This burial contained an unusual group of artifacts all placed within the bottom 12 inches of the feature (Figure 2). The first to appear was a slate rubbing stone 12 inches from the bottom of the pit. It is 3.75 inches in length and rubbed smooth on one side. Along one edge is a series of eight fine grooves often referred to as "tally marks". On the north side of the feature, two highly polished platform pipes were found next. These had been carefully placed so that their platforms rested one on top of the other with their bowls pointing in opposite directions. The smaller of the two pipes is made of a greenish chlorite and had the upper position. This pipe is 3.75 inches long by 1 inch wide. It has a 2 inches long stem with a perforation 1/8 inch in diameter. Directly beneath was the second, slightly larger steatite pipe. It is 3.50 inches long and 1.5 inches wide. The short perforated portion of the platform is only 5/8 inch long and has two notches, one on either side, just 1/4 inch from the end. One wonders if this pipe originally had a longer platform that broke and necessitated this unusual adaptation or repair. Hart illustrates a pipe from the Mid-West with similar dimensions and the same style of notches. He argues that these provided a means for attaching a reed or other stem while the worn or broken out section of the stem may have served to facilitate the pipe's draft (Hart 1978:104).

Near the center of the feature, a large leaf-shaped biface was found. This finely made blade is 6 and 11/16 inches long, 1 and 5/8 inches wide and made of a banded tan chert that resembles the Flint Ridge chert of Ohio. Given that this form matches the Adena-related blades found in the Cresap Mound (Dragoo 1963), I have previously speculated that this may be evidence of Adena migrants from Ohio coming into New England (Taylor 2006a).

A dense concentration of red ochre, 9 by 12 inches across, was uncovered at the base of the feature. At one end was a Channeled Whelk shell (*Busycon canaliculatum*) that is 7 inches long and modified for use as a cup or ladle. The lower narrow end may have served to pour liquids as well. Only 6 inches away within the red ochre, a deep-sea scallop shell (*Placopecten magellanicus*) was found that also had been modified for use as a spoon or small dish. It is surprising that these two shell objects had survived so well given the acidic soil in which they were found. The last object from this feature was a small pebble of rose quartz. This piece is 1 and 1/4 inches long and lay just outside the concentration of red ochre near the bottom of the burial. It may have served as a charm or good luck stone.

In addition to these artifacts, a fragment of human bone was found near the base of the feature but outside the red ochre. At the time, I thought this small piece of mandible, or jawbone, might represent the important elder or
Figure 3. Other platform pipes from the Middleboro area.

even shaman who had been buried with such elaborate gifts. After the passage of NAGPRA, I decided to return the small number of human remains I had found over the years to the Wampanoag for reburial. However, given the unusual nature of this burial, I decided it was important to learn as much as possible about this individual before returning the remains. Through the generous assistance of Lisa Anderson, a physical anthropologist at the New York State Museum in Albany, a more precise description was obtained. She determined that this fragment was from the right side of a child's mandible. The bone appears to be unburned and still contained two teeth, an erupted first molar with no evidence of carries or wear, and an unerupted second premolar. While it is not possible to determine the individual's sex from this fragment, the teeth indicate that this was a young child, probably in the range of 5 years old. I also made the decision to have this small fragment radiocarbon dated. The sample was sent to Beta Analytic Inc. and submitted for AMS dating. The result was a conventional radiocarbon age of 1510±40 BP (Beta-226114). Calibrating this to calendar years, the sample dated 1390±40 years ago or AD 560.

Since these artifacts appear to be male-related, I prefer to think that this was the burial of an important young boy, perhaps a chief's son. It is also possible that this young person had such fine artifacts buried with him in order to help him make the journey to the afterlife more easily.

Other Platform Pipes from the Area

As unusual as the two platform pipes from Burial 6 are, they are not unique. At least three other examples are known from the Titicut area (Figure 3). One is a platform fragment from a large pipe I found while surface hunting Seaver Farm several years ago. It is made of red Wamsetta sandstone, is 3 and 1/4 inches long and is incised with a series of nine horizontal lines (Figure 3a). A second platform pipe was found in 1987 at the nearby Fort Hill Bluff site (19-PL-163) after a portion of the site was bulldozed. This broken platform pipe is made of chlorite with actinolite crystals. The remaining portion of the platform is 2.5 inches long and appears to have lost another inch due to recent breakage. Much of the bowl is also missing although this breakage appears to be old (Figure 3b). The last pipe is the largest and finest example. It is made of a brown chlorite or steatite and is 6.5 inches long, 1 and 11/16 inches wide and has a bowl 1.5 inches high (Figure 3c). Unfortunately, I know less about this pipe's history. It came from an old Middleboro collection and was apparently one of two platform pipes found in a burial. I never saw the other, and reportedly better, pipe but was happy to acquire this one when offered to me in trade in 1984.

Conclusion

In thinking back about the discovery of this remarkable burial, it seems as though good luck kept it from being destroyed. If the front-end loader had continued just a few feet more, this grave and its story would have been lost
forever. We know the Native people used the Titicut/Seaver Farm area extensively during many periods of time, especially during the Late Archaic. The re-examination of Bu. 6 and presence of other platform pipes from the area indicate that Native people continued to use this portion of the Taunton River for ritual purposes during the end of the Middle Woodland period as well.

Acknowledgements

I would like to thank fellow M.A.S. members Jim Bradley, Dan Lorraine, Mary Lynn Rainey and Fred Robinson who donated money towards radiocarbon dating the remains from Burial 6. My thanks also to Lisa Anderson of the New York State Museum for her comments of these remains and to Jeff Boudreau for help with photography.

References

Dragoo, Don W.

Hart, Gordon

Taylor, William B.
CONTRIBUTORS

JOSEPH M. BAGLEY is a graduate of Boston University where he majored in Archaeology. He is currently an employee of the Massachusetts Historical Commission and plans to pursue graduate work in Cultural Resource Management and Northeast Pre-Contact Archaeology.

JEFF BOUDREAU is a former chairman of the Channet Chapter of the M.A.S. As a flint knapper, he has conducted replicative studies of quartz Squibnocket points, felsite Neville points and, most recently, various forms of fluted points. He is also the official M.A.S. photographer.

JAMES W. BRADLEY is president of ArchLink and has written extensively on archaeological topics across the Northeast. He is the current editor of the M.A.S. Bulletin.

MIKE McWADE is an accomplished artist and illustrator. As a member of the Guild of Natural Science Illustrators, his work has appeared in juried exhibitions at the Smithsonian Institution and the National Academy of Science. He also serves on numerous conservation boards and is active in the hawk and owl banding programs.

WILLIAM B. TAYLOR is a long-time member of the M.A.S. He has been an ardent collector of Indian artifacts in the Titicut area for more than sixty years.

EUGENE WINTER is an active member of the Northeast Chapter and serves as Museum Coordinator at the Robbins Museum. He is a past president of the Massachusetts Archaeological Society.