10-1981

Bulletin of the Massachusetts Archaeological Society, Vol. 42, No. 2

Massachusetts Archaeological Society

Follow this and additional works at: https://vc.bridgew.edu/bmas

Part of the Archaeological Anthropology Commons

Copyright
© 1981 Massachusetts Archaeological Society

This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts.
EDITOR'S NOTE
Barbara E. Luedtke.................................. 25

TRUE BLADES IN MASSACHUSETTS
Russell J. Barber.................................. 25

THE SEGREGANSET RIVER SITE: M39-SE 102
Arthur C. Staples.................................. 27

REPORT ON THE BRONSON MUSEUM
Massachusetts Historical Commission............. 30

MATCHING CAN BE FUN
William B. Taylor.................................. 37

SALLY ROCK QUARRY
William F. Bowman.................................. 39

SALVAGE ARCHEOLOGY AT INDIAN ROCK HOUSE
Bernard W. Powell.................................. 40

THE AUTHORS.. 50

NOTES TO CONTRIBUTORS................................ 52

PUBLISHED BY
THE MASSACHUSETTS ARCHAEOLOGICAL SOCIETY, Inc.
BRONSON MUSEUM — 8 NORTH MAIN STREET, ATTLEBORO, MASSACHUSETTS — 02703
MEMBER OF THE EASTERN STATES ARCHAEOLOGICAL FEDERATION
MASSACHUSETTS ARCHAEOLOGICAL SOCIETY
OFFICERS

President
Curtiss Hoffman...........58 Hilldale Road, Ashland, MA 01721

First Vice President
Josephine Laugelli...219 Beechwood Street, Cohasset, MA 02025

Second Vice President
Paul Ryll, 306 Old Plymouth Rd., RFD 1, Buzzards Bay, MA 02532

Corresponding Secretary
Ralph S. Bates.......42 Leonard Street, Bridgewater, MA 02323

Recording Secretary
Kathryn Fairbanks.....145 Aldrich Street, Roslindale, MA 02131

Financial Secretary
Lillian Harding........143 Fisher Street, Westboro, MA 01581

Treasurer
Thomas Athearn.......41 Donnelly Street, Fall River, MA 02723

Editor
Barbara Luedtke, Anthro. Dept., UMass/Boston, Boston, MA 02125

Membership Secretary
J. Rivard, Bronson Museum, 8 N. Main St., Attleboro, MA 02703

Museum Director
Maurice Robbins.......23 Steere Street, Attleboro, MA 02703

Trustees
Philip Brady, John J. Hartwell, Elizabeth Little,Terms Expire October 1981
Janice Weeks..........................Terms Expire October 1982
Thomas Lux, Duncan Ritchie, Valerie Talmage,Terms Expire October 1982
William B. Taylor....................Terms Expire October 1982

Editorial Board
David Cohen..............11 Mayfair Street, Worcester, MA 01603
Kathryn Fairbanks....145 Aldrich Street, Roslindale, MA 02131
Eugene C. Winter.............54 Trull Lane, Lowell, MA 01852

MASSACHUSETTS ARCHAEOLOGICAL SOCIETY BULLETIN
Published in two numbers of one volume each year, commencing in April.
Address all requests concerning membership to the Membership Secretary; all orders for back issues of the Bulletin to the Museum; mail Society dues to the Financial Secretary.

BRONSON MUSEUM
8 North Main Street
Attleboro, Massachusetts, 02703
Tel. (617) 222-5470

The Bronson Museum is located on the fifth floor of the 8 North Main Street Building. Museum hours are from 9:00 a.m. to 3:30 p.m. daily, Monday through Friday. Although this schedule is usually adhered to, it is wise to call the Museum before coming. The Museum is also open by appointment at other times. Call the Museum Director, Maurice Robbins.

The Museum has extensive exhibits of stone implements, obtained for the most part from the Massachusetts area. They are arranged in culture periods identified in the Northeast, and cover a time extension of some 10,000 years.
EDITOR'S NOTE
Barbara E. Luedtke

Information about the past can come from many sources, including site survey, surface collections, salvage excavations, examination of documents and histories, excavation for the sake of discovery, analysis of collections in museums, and contract or conservation archaeology. The articles in this issue are derived from all these different types of endeavor, and demonstrate nicely the many aspects of archaeology in New England today.

Despite their diversity, these articles also share an element of puzzle-solving, and for many people this is a large part of the special pleasure of archaeology. Who camped at this spot? Can we sort out tools of different time periods from a disturbed context? Where did the raw material for these stone tools come from? Is this tool type native to New England? What conclusions can be drawn from artifacts in museum collections? What was the original form of these broken tool fragments? Why are sites distributed the way they are for this time period?

I hope these articles will inspire each of you reading this issue to think about the archaeological puzzles that especially interest you, and about information you have collected that would be of interest to others. The pages of the Bulletin should serve as a meeting place for many different facts, questions, and theories about New England's past, and all of us interested in that past should contribute our own discoveries and ideas. The result will be a fertile mixture of observations and interpretations out of which knowledge can grow.

TRUE BLADES IN MASSACHUSETTS
Russell J. Barber

The word "blade" is much abused in New England archaeology. Flat, bifacially flaked stone tools are called "cache blades" and the flat part of a point is called its "blade." Another kind of blade, not frequently discussed in New England archaeology, is the "true blade."

The "true blade" is sometimes known as a "ribbon flake" of a "flake knife" in North America, but in Europe it is the only type of artifact designated simply "blade." These blades are parallel-sided, long, narrow, and thin, often with a curvature along their length (Figure 7). Their cross sections are invariably either triangular or trapezoidal and the form is usually standardized so that one blade looks much like another.

The reason for this uniformity lies in the method of producing blades. First, a core is prepared by removing the cortex and trimming it to produce a striking platform from which the blades will be struck. Then, long, thin blades are struck successively from the core, each removal preparing the way for the next. In this manner, many uniform blades can be produced with very little wasted material, except the exhausted core itself. (For a more detailed account of blade production, see Bordaz 1970.)
The true blade is not a common artifact in New England; in fact, standard works indicate that true blades are absent from New England (Sanger 1970). They are said to be restricted to areas further west and south, especially to areas in the Mississippi Drainage and where the Hopewell trade network was prominent.

Nonetheless, blades occur in New England. In Massachusetts, they are reported from at least two sites: the Wheeler's site in Salisbury (Barber 1979:384) and the Webb State Park site in Weymouth (Huntington 1979:55-59). At the Wheeler's site, a single trapezoidal blade of a material usually described as Pennsylvania jasper was found; at the Webb State Park site, 5 blades were found, 4 of Braintree hornfels and 1 of so-called Pennsylvania jasper. The form of the hornfels blades was less regular than that of the jasper blades, which may indicate either that they were produced by a different technology or that the less tractable material caused diminished uniformity. At both sites, the blades were found in Middle Woodland contexts.

The occurrence of these blades raises a series of questions. Were the blades traded into New England from the Midwest, as I have suggested (Barber 1979:384)? Or, were they at least in part the product of an indigenous blade tradition, as Huntington (1979:59) has suggested? Or, is the situation more complex (as both of us have speculated), with the imported blades possibly stimulating the development of a local blade industry in imitation? Was that possibly imitative industry a true blade industry, with prepared cores, or was it an industry which produced similar products (lamellar flakes) by different means?

At the moment, there are no good answers to these questions. Proponents of the trade proposition can point to the lack of documentation of exhausted cores in New England and the prevalence of apparent exotic stone in the blades with the most typical form. The very rarity of blades may suggest that they were made elsewhere, since blades are typically made in substantial numbers. Proponents of the in situ proposition can rebut these claims by pointing to Braintree hornfels and reminding that it has not yet been documented that all the so-called Pennsylvania jasper did originate in Pennsylvania; a similar material occurs at the Conklin Quarry in Rhode Island and may have been used prehistorically. The apparent absence of cores and rarity of blades may be the result of few people having looked for them.

The only way to clear up these questions is to examine a series of these New England blades and make detailed comparisons to blades elsewhere. There are numerous studies of blades from the Midwest (White 1963, 1968; Pi-Sunyer 1965; Sanger 1970; Barber 1978) and the attributes which make blade industries similar or different are well known (Sanger, McGhee and Wyatt 1970). Detailed comparisons should be able to determine whether blades found in New England originated locally or were transported there from elsewhere.

I have outlined an archaeological problem and summarized what little relevant information there is in the literature. I hope that this article will stimulate individuals to think about their own and other collections and to keep an eye out for blades. I intend to continue my study of New England blades and would appreciate hearing from persons who know of other specimens which I could examine, measure and photograph, or who share an interest in the topic.
This site is located on the north shore of the Segreganset River in Dighton, Massachusetts, about 250 feet (76 m) west of the railroad tracks and the Taunton River. I excavated about 12 two-meter squares here in the summer of 1966. This site was not previously known, but looked to me to be an ideal camp site, near many other known sites. The Boats Site (M39-52) is a short distance south (Rose 1953, 1965), and Grassy Island (M39-7) is located just across the river from the Boats Site (Johnson and Raup 1947). The Back Porch Site (M39-50) (Staples nd) and the Sweet's Knoll Site (M39-71) (Robbins and Staples 1955) are located a short distance to the north of the Segreganset River Site. Bear Swamp 1 (M39-72) Staples and Athearn 1969) and Bear Swamp 2 (M39-81) (Barnes 1972) are across the Taunton River to the northeast, about 7/10 miles (1 km) as the crow flies.

I received permission to dig at the Segreganset River Site from Dighton town officials, as I believed this area was part of the property of the Dighton police headquarters. I have since seen an assessor's map that shows the site area as the property...
of the town of Somerset, purchased by the town to protect its water rights to the Segreganset River.

EXCAVATION PROCEDURES

The Segreganset River Site was very difficult to dig, because at high tide it is under water. Furthermore, the site is clothed with cattails, the roots of which form a solid mass several inches deep below the surface. Water from the swamp to the north and west of the site drains into the excavation as soon as the cattail roots are removed, and it was therefore necessary to dig a drain to the river bank. Even then, the soil was very wet and muddy. Finally, there are masses of poison ivy at the site.

I first established a base line extending from a nail at the base of a cedar tree at the northeast corner of the excavation (labeled point AO) to a large flat rock standing on edge about 75 feet (23 m) to the southwest of the tree. The cedar tree is easily seen from Rte. 138 or from the railroad tracks, as it stands out by itself, clear of the trees in the swamp. My excavations were all to the south of this baseline.

The first step in excavation was to remove the cattails and their roots, which extended nearly to the junction of loam and subsoil. I then scraped down. Almost immediately I encountered a 4-inch (10 cm) thick black midden that covered most of the area eventually excavated. Everything I found was within or on top of this midden with the exception of a hearth, found below the midden. I tried screening the midden soil under water but was not successful, as the soil was too sticky.

FEATURES AND ARTIFACTS

The only feature found was a well-made hearth which was bowl-shaped on three sides. The top of the hearth was 40 cm (16 inches) below the ground surface and 8 cm (3 inches) below the base of the midden. The hearth was 80 cm (31 inches) by 90 cm (35 inches) in diameter and 25 cm (10 inches) deep. It contained charcoal and burned stone.

I recovered 17 stone tools (Figure 8), two of which are questionable. There were two felsite small stemmed points and two white quartz small stemmed points. A number of triangular points were found, including one small triangle of green flint, one crude shale triangle, one felsite triangle with tip and one basal corner missing, and the bases of two large, well-made quartz triangles. One of these latter was made of waxy smooth quartz and the other was of granular quartz.

Other chipped tools included two utilized flakes, one of which was used as a knife, and a quartz artifact that I believe is the base of a small drill. At a quick glance it would appear to be a triangle with one corner broken off, but on closer examination the broken corner looks like the base of a drill section.

I also found three grooved weights made from cobbles, and a round flat stone of quartzite that may have been used as a hammerstone or gaming stone. It is worn very smooth and almost appears polished. Finally, a tool of purple shale, with scratch marks on one flat surface, may have been used as a scraper.

I also recovered 989 flakes, of which 542 were quartz, 406 were felsite, 40 were flint, and 1 was shale. The flint flakes were red, honey-colored, green, brown, and black. I believe that the red flint chips are honey-colored flint that has been heat-treated. One of the chips recovered is both red and honey-colored. I have heated honey-colored flint chips within the last year, and they turn as red as these chips are.

The Segreganset River Site also produced a very small amount of red ochre and about a cupful of small fragments of calcined bone.
REFERENCES CITED

BARNES, RUTH CAROL

JOHNSON, FREDERICK and HUGH M. RAUP

ROBBINS, MAURICE, ARTHUR STAPLES and ARNOLD STAPLES

ROSE, EDWARD

STAPLES, ARTHUR and ROY ATHEARN

STAPLES, ARTHUR

Figure 8. Lithic artifacts from Segreganset River Site. 1 & 4, white quartz small stemmed points; 5 & 15, small #6 felsite triangles; 6 & 7, large white quartz triangles; 8, grayish green #5 flint triangle; 9, shale (?) #1 triangle; 10, flake felsite knife; 11, base of white quartz drill (?); 12, notched sandstone weight; 13, a dull, dark, purple shale chipped tool with striation from use, on back side; 14, quartz gaming stone(?) 2 & 3, felsite small stemmed points.
REPORT ON THE BRONSON MUSEUM

Massachusetts Historical Commission

INTRODUCTION

The Massachusetts Historical Commission (MHC) is currently conducting a statewide reconnaissance survey of historic and prehistoric properties in the Commonwealth. The primary goal of the prehistoric survey is to provide information for making better management and preservation decisions. Specifically, the project will improve the quality of data in the MHC Prehistoric Archaeological Site Inventory. This Inventory was originally based on the files of the Massachusetts Archaeological Society (MAS), and has been expanded to include information from federally and state-funded archaeological contract reports, other site inventory files, and private individuals who reported sites on their own initiative. Although the information in the site inventory is incomplete and unvaluated, the site files are, nonetheless, the basis for assessing the archaeological impact of proposed construction projects, and for determining the significance of threatened sites within Massachusetts. Improving the quality of the site files is a major goal of the MHC.

Inventorying the major collections of Massachusetts prehistoric artifacts was one method chosen to add information to the site file. Analysis of collections improves the file several ways. First, many previously unreported sites have been noted and added to the inventory. Also, a number of sites already on file were merely listings with little or no information on their age or function. The inventory project has been able to match up artifactual information with many of these sites.

Since many of the sites represented in museum collections have been destroyed, these artifacts are the only remaining source of information. Data from destroyed sites are useful in evaluating the archaeological potential for nearby undisturbed property. Museum collections have the additional benefit of being already out of the ground, so no additional sites are destroyed in collecting this data. Finally, the MHC inventory is consolidating previously unorganized and generally inaccessible data into one file which is valuable for both archaeological research and cultural resource management.

BRONSON MUSEUM

In February 1980, the MHC's prehistoric survey team began to inventory the collections housed in the Bronson Museum. The team members, David Anthony, Fred Carty and Linda Towle, completed the inventory eight months later. The specific procedures developed for inventorying prehistoric collections are described in a separate document, entitled "State Reconnaissance Survey: Prehistoric Survey" (MHC A80a).

All the prehistoric artifacts in the Bronson which could be assigned a provenience within Massachusetts are inventoried. Out-of-state materials were not. Five types of provenience were assigned: identifiable site location, potentially identifiable landowner name within a known town, town only, river drainage only, or region only (such as Cape Cod or Essex County). Table 1 illustrates the percentage of artifacts which were assigned to each provenience type. Well over half of the inventoried artifacts came from known, identifiable site locations.

A total of 37,865 artifacts were coded. This does not represent the entire contents of the Bronson Museum, as the Bronson also has thousands of pieces from out-of-
Table 1
Artifact Distribution by Provenience

<table>
<thead>
<tr>
<th>Provenience Type</th>
<th>Quantity of Artifacts</th>
<th>Per Cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded Site</td>
<td>24,108</td>
<td>63.6</td>
</tr>
<tr>
<td>Drainage</td>
<td>10,557</td>
<td>27.8</td>
</tr>
<tr>
<td>Town</td>
<td>2,089</td>
<td>5.5</td>
</tr>
<tr>
<td>Landowner Code</td>
<td>619</td>
<td>1.7</td>
</tr>
<tr>
<td>Region (Study Unit)</td>
<td>492</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Region (Study Unit) contains 492 artifacts, representing 1.4% of the total artifact collection.

state, and perhaps two thousand more pieces that are from unknown locations. However, MHC's inventory did include the great majority of the Bronson's contents.

Because most of these artifacts were surface-collected rather than excavated, there are biases in the make-up of the Bronson collections. The greatest bias is the preponderance of projectile points, which are durable and attractive, and the dearth of ceramics which are fragile and, in this region, rarely beautiful. Table 2 illustrates the percentages of artifacts of different gross types contained in the Bronson collections. Projectile points and edge tools (chipped stone scrapers, gravers, knives, bifacial blades, etc.) make up, by far, the majority of the artifacts in the Bronson Museum.

Table 2
Inventoried Artifacts by Artifact Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantity</th>
<th>Per Cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projectile Points</td>
<td>22,086</td>
<td>58.3</td>
</tr>
<tr>
<td>Chipped Stone Tools</td>
<td>9,770</td>
<td>25.8</td>
</tr>
<tr>
<td>Bone</td>
<td>2,889</td>
<td>7.7</td>
</tr>
<tr>
<td>Ground Stone Tools</td>
<td>1,910</td>
<td>5.0</td>
</tr>
<tr>
<td>Ceramics</td>
<td>617</td>
<td>1.6</td>
</tr>
<tr>
<td>Glass Artifacts</td>
<td>299</td>
<td>0.8</td>
</tr>
<tr>
<td>Organic Material</td>
<td>108</td>
<td>0.3</td>
</tr>
<tr>
<td>Shell</td>
<td>100</td>
<td>0.3</td>
</tr>
<tr>
<td>Metal Artifacts</td>
<td>45</td>
<td>0.1</td>
</tr>
<tr>
<td>Wooden Artifacts</td>
<td>41</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Total artifacts inventoried: 37,865, representing 100.00% of the Bronson collection.
Several other biases were observed in the museum collections. For example, the collections seldom contained complete assemblages. This is due both to the surface origin of the sample and to the biases of the individual collector. In other words, not all the material on a site was visible to the collector, and not everything that was visible was collected. Individual collector's preference was also a source of bias. Projectile points and large ground stone tools were the most sought-after artifacts by the early collectors. As a result, they are better represented than broken bifaces or flakes. This results in distortion of the sample. Similarly, those raw materials that are easy to see, such as quartz, as well as those which are obviously not of local origin (like chert) have a greater visibility in a plowed field than raw materials whose color approaches that of the soil. Flakes of an unusual color or material may have been saved, whereas those of more common and mundane materials were not.

Biases also occur in terms of site information and location. Some of the collections lack even the most basic provenience data. More often, only a vague designation is provided. Many collectors had specific collecting "territories." These were usually related to how close sites were to their home base and the amount of success they had in finding artifacts within a given area. In some cases, collectors covered large territories whereas other collections came from very specific and limited areas. Generally, sites that were accessible, near roads, lake shores, or a river bottom land, were more heavily collected than those where access was difficult. All these are factors which limit or bias efforts to understand patterns of site distribution.

The Bronson collections derive for the most part from four regions in Massachusetts: 1) An area around the mouth of the North river, represented by five sites in Scituate and Norwell; 2) An area along the middle to lower Taunton drainage, represented by the Bear Swamp, Titicut and Assawompsett sites; 3) The middle and lower drainage of the Ten Mile River in Attleboro and Pawtucket, astride the Massachusetts/Rhode Island state line, represented by the Richardson collection; 4) The lower Sudbury and upper Concord River valleys, represented by the Heard Pond site in Wayland and by the Todd and Bates collections. There are also interesting small collections from many other sites scattered across southeastern Massachusetts and Cape Cod.

THE RICHARDSON COLLECTION

The largest collection at the Bronson Museum is the Richardson collection. John A. Richardson was a resident of Attleboro who collected extensively during the 1890's and early 1900's. This collection, containing approximately 20,000 artifacts, was the basis upon which the Bronson Museum was founded in 1939. The sites from which Richardson collected are concentrated along the Ten Mile River, from the confluence of the Bungay and Ten Mile Rivers in Attleboro south into Rhode Island. This area constitutes Richardson's "collecting territory." Unfortunately for site identification purposes, more than half (8,455) of the artifacts which we have inventoried from Richardson's collection are provenienced only as Ten Mile River, Attleboro.

The Richardson collection is an important research base for understanding prehistory in the lower reaches of the Ten Mile River valley for two reasons. His collection dates from the late 19th century and many of the sites which were the focus of collecting activity have long since been destroyed. Secondly, Richardson's artifact collections as well as his catalogue and notes have survived relatively intact.

The Richardson collection provides a glimpse of the astounding density of prehistoric sites which once existed even in minor tributary systems. Within the bounds of Attleboro, Richardson catalogued 37 sites. There are few places in Massachusetts which were so intensively surveyed at such an early date. Even so, there are biases in the collection. Richardson did not search the upland area north of Attleboro, and he appa-
rently also ignored the ponds and marshes lying back from the main course of the Ten Mile and its major tributaries. He was, however, extremely active along the banks of the major streams in the drainage. As a result, we have unusually complete information on the location and contents of lowland riverine sites in this drainage.

The most striking aspect of the artifact inventory from this area is the extremely large number of quartz Small-Stemmed points, Squibnocket triangles and Levanna triangles; almost 9,000 specimens. These quartz points account for more than half of all the points in the Richardson collection. Unfortunately over half of the Small-Stemmed and Levannas and about a third of the Squibnockets lack specific site proveniences; they are just from "Attleboro." Despite this lack of provenience, a sample of several thousand site-provenienced quartz projectile points remains. The morphological variation in these points is extreme and casts some doubt on the usefulness of existing typologies for Small-Stemmed points. Even using the broad definitions now available, a significant number of quartz points (almost 250) were untypable. Perhaps even more interesting, a small fraction of these quartz points were of types not normally associated with quartz. These include: 12 quartz Orient Fishtails, 4 Fox Creek Stemmed, 3 Meadowoods, 1 Susquehanna Broad, 3 Eared-Notched Brewertons, 2 Nevilles, and 13 Starks. These datable types seem to indicate that quartz was used during the entire time range from Middle Archaic to European Contact, about 7000 years. The Richardson collection clearly deserves attention by researchers concerned with the quartz industry in Southeastern Massachusetts.

THE HEARD POND COLLECTIONS

A second area well represented by collections in the Bronson Museum is the Concord-Sudbury drainage, particularly the area around Heard Pond. The materials from the Bronson constitute only a fraction of what has been collected from the area, and for the most part, consists of small collections of artifacts (1-20 specimens per site) from numerous different sites. The Todd collection (550 specimens from 25 sites) and Bates collection (168 specimens from 18 sites) are almost entirely small samples, most of which were probably surface finds discovered from about 1940-1960. C.C. Ferguson's collection from Heard Pond, however, contains 2035 artifacts from one site.

The following general observations can be made on the basis of the inventory. At Heard Pond, as well as in the Bates and Todd collections, the single most common point type is the Small-Stemmed. Squibnocket Triangles were the second most common type at Heard Pond. A majority of all these points (55-65%) are made of quartz. Recent work by Dincauze has demonstrated an indigenous Small-Stemmed point tradition in this area during the Late Archaic. This appears to have evolved from the preceding Middle Archaic Neville and Stark complexes (Dincauze 1976). Currently, the Small-Stemmed points are thought to be confined to the Late Archaic period. However, they may extend back into the Middle Archaic and forward into Early Woodland as well.

At Heard Pond there were 116 Brewerton side-notched points, most of which are eared. Brewertons show up regularly in the Todd and Bates collections also. This frequent occurrence of Brewerton points may have important implications for the origin and distribution of the Late Archaic Brewerton tradition.

In contrast, points of the Susquehanna tradition (Atlantic, Wayland Notched, Susquehanna Broad) are rather poorly represented at the Heard Pond. This was also unexpected, given the rich Susquehanna tradition burials at the Mansion Inn site located just a few miles upstream from Heard Pond (Dincauze 1968). While Susquehanna points do occur in the Bates and Todd collections, they are relatively scarce at Heard Pond. Instead, the major Late Archaic occupation at Heard Pond is represented by Brewerton and Small-Stemmed points. This is a puzzling situation, and should receive further study.
The Middle Archaic component at Heard Pond, with 97 Stark-like and 96 Neville-like points, is probably the richest documented Middle Archaic component in Massachusetts. Stark-like and Neville-like points also occur regularly in the Todd and Bates collections. Most of these points are made of local quartzites and argillites, in contrast to the imported felsites preferred by most later cultural groups. The Concord-Sudbury region was clearly a major settlement area during the Middle Archaic (MHC 1980b).

Early Archaic materials are also found in this area, though they constitute a thin scatter. Two Bifurcate-Base points and one Kirk-Stemmed point, the latter highly unusual in Massachusetts, were found at Heard Pond. Other Bifurcate-Base points have been found down the river valley from Heard Pond. This finding extends the geographical area known to have been occupied during the Early Archaic period. Previously it was thought that the ecological environment north of the Charles River would have discouraged human occupation during the early Archaic (Dincauze and Mulholland 1971).

CONCLUSIONS

The Prehistoric Survey Team's inventory of the Bronson Museum's collections, and subsequent inventories at Peabody Museum, Harvard, and the R.S. Peabody Foundation in Andover have had three results. Considerable artifactual information has been entered into the MHC's recently computerized site file. This file also contains environmental information such as soil type, elevation, slope and nearness to water for each known site in Massachusetts. With this improved data base it becomes possible to compare the characteristics of single sites or groups of sites. Whether for scholarly research purposes or for making better informed management decisions, this improvement in the quality of the site inventory is a major step forward.

A second result of the survey has been an increased awareness of how much untapped research potential still exists in the collections of the Bronson as well as other museums in Massachusetts. If the Massachusetts Historical Commission's inventory serves as a stimulus for additional amateur and professional analysis of these collections, it will have accomplished an important service.

Finally, in order to inventory the Bronson's collections, it was necessary to find out more about many of the late 19th and early 20th century collectors. In some cases, the story was a happy one. The materials were cataloged or at least labelled, notes had been kept and, equally important, plans had been made for disposition of the collection after the collector's death. These are the important collections, the ones which have survived. Unfortunately, however, there were other instances where adequate precautions had not been taken. These collections were often split up, with some pieces sold and taken from the state, and now those collections survive only as fragments usually without labels or context. The research value of these undocumented and fragmented collections is negligible.

Fortunately, over the last several decades, the Bronson Museum has been available as a repository where collections can be housed, displayed, and preserved. This has been an important function. The Bronson Museum has played and continues to play a major role in preserving Massachusetts' archaeological heritage.

ACKNOWLEDGMENTS

The following people contributed to this report:

David Anthony, Fred Carty and Linda Towle - Prehistoric Survey Team.
James Bradley - Survey Director. Valerie Talmage - State Archaeologist.
The MHC and Survey Team are grateful to the Bronson Museum for allowing access to their collections. We especially wish to thank Dr. Robbins, Mr. Rivard, and Dr. Bates for their generous help and assistance.

REFERENCES CITED

DINCAUZE, DENA F.
DINCAUZE, DENA F. and M.T. MULHOLLAND

MASSACHUSETTS HISTORICAL COMMISSION

Figure 9. Sample of points from a large and unpublished cache, High Head, Truro, Cape Cod. Meniz collection, Bronson Museum.
Figure 10. Among the many Bronson Museum artifacts with considerable research potential are these channel flakes from Wapanucket, locus 8.

Figure 11. Paleo-related materials from Wapanucket, locus 8 - gravers. Bronson Museum.
MATCHING CAN BE FUN

William B. Taylor

One of the most satisfying aspects of Indian relic collecting is the matching of two broken pieces. Almost all collectors have found a nice broken specimen and wished they could find the missing piece. To discover the lost portion, sometimes after an interval of several years, is an extremely rewarding experience.

During the last 35 years I have matched many broken pieces, resulting in over two dozen complete projectile points, drills, knives, an ulu and a 15-inch (38 cm) pestle (Figure 12). Approximately one third of these finds came from excavations. Frost is probably the main cause of the fractures in these cases, since the pieces were often separated by only a few inches.

The majority of matched pieces come from surface hunting. Through the years I carefully separated good broken artifacts by site, putting these pieces in separate boxes. This makes an excellent winter pastime; even when the ground is frozen or covered with snow, I can still hunt through boxes and occasionally match up two pieces.

Dirt roadways to lake cabins or summer cottages at the beach are another good spot to look for broken points. Constant wear and erosion expose artifacts, which are then broken by passing vehicles. If the timing is right, the broken pieces lie side by side.

Motor bike trails, horse trails, logging roads and old wagon roads through wooded areas have all yielded a few matched points too. Burials containing "killed" grave goods are another example of broken pieces that can be mended. In recent years a local collector was helping to dig out a crawl-space under a shed, to make a full cellar. Under the existing foundation appeared a mortar in two pieces, which were readily glued together.

Sometimes many years pass between finds and this makes the discovery all the more exciting. Around 1945 I found the base of a flint drill at the Fort Hill Site in North Middleboro, Massachusetts. For the last 25 years this site has been farmed and during 1978 I agreed to plow the area of this lost site for the new owner. In the following months I found several nice points, knives, drills, scrapers and two plummets. But the real prize came on March 10, 1979, when I found the 1½ inch (3 cm) bit of a delicate flint drill. Immediately I remembered the flint drill base which I had found years ago and upon returning home brought it out. From initial inspection it appeared to be the missing piece. A few years earlier I had the bit restored, so with some hesitancy I broke off the restored point and tried to fit my latest find in place. It fit perfectly and results in a fine, delicate, complete 2½ inch (5.5 cm) drill. To make a find like this after thirty years is a real thrill. It shows what careful recording and dogged persistence can accomplish.
Figure 12. Eighteen complete projectile points, knives, spears, drills, and an ulu from the Archaic and Woodland periods, from the collection of William B. Taylor, Middleboro, Massachusetts. The broken pieces were found over the last thirty-five years and matched up. The knife in the center is 4½ inches (11.5 cm) long. The slate ulu at the top is 3½ inches (9 cm) long with a white stripe through the center. At the upper left is the flint side-notched drill, the two pieces of which were found over 30 years apart. All are from a section of North Middleboro and Bridgewater, Massachusetts, known as Titicut.
SALLY ROCK QUARRY

William F. Bowman

INTRODUCTION

On July 30, 1978 the writer, accompanied by John Cotta, Bill Hallaren, and Wayne McCue, decided to examine a geologically known exposure of the Mattapan Volcanics (Skehan 1975:35-36). As this outcrop occurs within the Neponset River Valley, it was our hope that it would prove to be yet another aboriginal lithic source.

Upon arriving at the outcrop we immediately recognized the material there as the white felsite which is common in the lithic debitage from early Middle Archaic sites all along the Neponset and Cochato River valleys. This material was reported at the Cedar Swamp Site (Bowman and Zeoli 1977:43,46).

THE SITE

Known as Sally Rock Quarry, the site can be found on the Boston South Quadrangle. Conveniently located for aboriginal exploitation, the quarry lies about half a mile north of the Neponset River on Stony Brook.

Due to considerable urbanization of this area and to extensive quarrying in the recent past for road material and roofing granules (Weaver 1967:83-93), little now remains in evidence of the once extensive aboriginal stone workings at this location.

LITHOLOGY

The material here is a compact, aphanitic, rhyolitic felsite. The color ranges on a fresh break from white or yellowish to light grey, brown, or greenish. The vast majority of the material weathers with a white to cream colored patina, often with iron oxide staining due to large quantities of minute disseminated phenocrysts of iron pyrites. In the typical material, phenocrysts of quartz and feldspar are not at all common and in this sense Sally Rock felsite is not porphyritic. However, some small areas can be found where the rock takes on a coarser texture and becomes what could be called aplite, or fine-grained granite. In this form, it is reminiscent of the finer phases of the Weymouth-Hingham seamface granite.

ARTIFACTS AND FEATURES

One natural talus slope with prehistoric materials was located and surface collected. We found considerable debitage and signs of prehistoric quarrying at the white felsite outcroppings. Among our recoveries here was a full-grooved axe, made of hornfelsized Braintree slate and presumably used in quarrying. We also found a small number of exotic flakes of Blue Hills aporphylite and a red banded aporphylite from another quarry about a mile from Sally Rock.

CULTURAL ASSOCIATIONS

From a survey of collections it is apparent that this material was popular during the Middle Archaic, and is especially common for tools of the Neville Complex (Dincauze 1976). Neville points, associated u-based preforms, choppers, scrapers, and even a chipped ulu made of Sally Rock felsite were recorded.
After this early phase of utilization the quarry does not seem to have been exploited much until the Middle Woodland period. Greene points sometimes appear made from this material, and a Fox Creek and a Levanna-like point of this material were also found in the collections (Ritchie 1971).

These later artifacts made of Sally Rock felsite do not have a well-developed white patina and appear much fresher than the Archaic artifacts, often being grey, light brown, or greenish. The degree of patination is therefore a help in distinguishing early Middle Archaic debitage from the later Middle Woodland material.

DISTRIBUTION

The distribution of Sally Rock felsite on archaeological sites is little known. It occurs frequently on Middle Archaic sites along the Neponset and Cochato River valleys. Scattered examples of it are also known from the South Shore river systems such as Back River, Weir River and North River. Sally Rock felsite has been seen in collections from the Taunton River.

REFERENCES CITED

BOWMAN, WILLIAM F. and G. ZEOLI

DINCAUZE, DENA F.

RITCHIE, WILLIAM A.

SKEHAN, S.J., JAMES W.

WEAVER, LEONARD W.
1968 Rocks of Eastern Massachusetts for Use as Roofing Granules. Economic Geology in Massachusetts. Graduate School, University of Massachusetts, Amherst.

SALVAGE ARCHEOLOGY AT INDIAN ROCK HOUSE

Bernard W. Powell

Long known to hikers and others who use the public Town Forest of Wilton, Connecticut, "Indian Rock House" was systematically first studied by the author in the summer of 1972. His attention was directed to the site by his son, who showed him the spot while on an overnight Scout camping trip.

Permission to excavate was obtained from the town's Parks, Recreation and Conservation Commission (F.C. Herot, Pers. comm., 4/3/72). Cursory survey of the site revealed both old and recent "potholing," and local inquiries soon established that the place had been known to generations of Wiltonites who have played and camped in and near the shelter. Some of these people were able to recall finds of artifacts in the past, but fortunately no one had ever guessed the real nature of the site, and no wholesale ex-
cavation had ever been launched. Nevertheless, this information was discouraging in that it suggested yet another disturbed prehistoric site—all too frequent an occurrence in our densely populated area. However, we hoped for the best, and assumed a working strategy based on artifact typology, where possible, to bolster interpretations should stratigraphic data prove to be greatly disrupted.
A plane table survey of the site yielded a scaled plat (Figure 13). This shows a rock shelter about 25 feet (7.6 m) wide and 12 feet (3.6 m) deep, in a bedrock ledge, facing generally southeast. Broken, jumbled slabs of ledgerock, likely remains of ancient rock falls, litter the area in front of the shelter and down the adjacent talus. Probably, these presumptive rock falls are postglacial in time. A small ephemeral bog lies at the foot of the shelter talus; it may be a "fossil remnant" of a former freshwater woods pond. Less than a half-mile eastward flows a permanent stream.

Our site datum was established in the southmost corner of the shelter, with an "X" chiseled into an exposed slab. Alphabetically designated grid lines were laid out on a N63°W bearing. A corresponding set of lines, at right angles, was also laid out, and these were designated in terms of their distance north or south of the base datum. The five-foot-square (1.5 m) units so created became our primary control for excavation, and received their individual designations from the coordinate in their southernmost corner.

Additionally, we dug an exploratory trench, Trench A, down the talus, and we excavated a test pit on the downslope side of an outcrop at the base of this talus (see Figure 13 for these relations).

SOILS

We recognized three soil types at Indian Rock House. Their general disposition may be gathered from the selected profiles in Figure 14. As encountered by us, and from the surface down, they are:

"A" - The A soil horizon as developed on local forest soils. Very dark, black, organic soil.

"B" - Corresponds to the B horizon of a developed soil column. Dark, tannish soil containing humic and acidic leachates of the A horizon. Shades to lighter hue in lowermost portion.

"C" - *In situ* mineral soil; yellowish, sometimes orange-hued; containing grit, pebbles and larger rock fractions at random.

These soil types for the most part were easy to discriminate. However, we encountered several instances where they were obviously mechanically mixed (Figure 14, b and e). This we interpreted to be upset from pothunters, campers, and natural causes such as rodent burrowing. We believe such "mechanical mixes" are far more frequent on sites of this area than reported in the literature. Relevant also is the fact that many sites in the Northeast may have been originally found or disturbed long enough ago for the soil to reweather to a new profile. The one soil type that would seem most likely to be undisturbed, and whose inherently lighter shade would likely not re-establish itself from accidental mixing with darker fractions, is the "C" soil. It is also ordinarily the deepest soil on a site. Because of the probability of reweathered profiles, and migrating profiles, we caution excavators on Northeastern sites in their interpretations of strata they encounter.

FEATURES

Several roughly circular, irregular patches, varying from one to two feet (0.3 to 0.6 m) in diameter, and showing lens-like vertical sections, were interpreted as fire spots or transient hearths (Figure 14, d and e). They usually were composed of grey-white, greasy, clayey "soil", which we suspect to be disintegrated wood ash, with tiny inclusions of charcoal, specks of ocher, and fragments of marine shells, bones and chipping debitage.
A rodent burrow was traced in at least one locus, the southwest face of Unit C/10 (Figure 14, f), where it intruded the "B" soil from a onetime "A" soil layer above.

There was vague suggestion of a pit (storage?) in Unit E/5 (Figure 14, a). Finally, overlapping, "shingled" slabs near the outer boundary of the shelter formed a pseudo-breastwork or low wall just beneath the original surface. We have often encountered this phenomenon at rockshelters in this region, and formerly inclined to think the rocks were deliberate placements for "hunters' stands," or other modifications by later Euro-Americans who transiently used these shelters. At present, I think their deliberate, layered look is most fortuitous, and they most probably represent nothing other than rockfalls from the former overhangs on such shelters.

SELECTED PROFILES
FROM THE INDIAN ROCK HOUSE IN THE WILTON TOWN FOREST

Figure 14.
STRATIGRAPHIC CONTROL

Suspicious of the soil horizons we might encounter in our shelter, we introduced the familiar stratagem of arbitrary 6-inch (15 cm) levels in our dig. As the shelter floor was relatively flat when first encountered, we measured levels down from the surface. Thus, most finds were noted both by their associated soil "type" and by their 6-inch level. This method does provide a means of cross-checking on finds, and aids in assigning their most probable situation in final assessment.

When we started work, the surface of the shelter was littered with "pop tops," bottle caps, broken glass, wire nails, .22 shells and other debris of modern times. In one case, Unit C/15, aboriginal pottery was associated with aluminum foil at -30 inches (76 cm) in the "B" soil. However, this unit was penetrated by a filled rodent burrow, so this probably explains the anomaly.

PROJECTILE POINTS

Projectile points are the main find we made providing a clue to the shelter's early inhabitants. The first such object recovered (Figure 15, E) lay on the upper surface of the "C" soil in Unit A/5. It was only 6 inches (15 cm) from the surface, but the "B" soil was absent in this unit. It is a side-notched point of dark, flinty slate, or indurated shale. Such stone is not typical of the immediate site, but is
commonly reported (Ritchie 1961; others) for the Hudson Valley 25 miles or more to the northwest. The point conforms in a general way to the published criteria of Ritchie (1961) for the type Brewerton Side-Notched, encountered by him on sites of the Late Archaic period in New York. Alternatively, the point may show closer relations to the type Sylvan Side-Notched (Ritchie 1961), a morphological overlap said by that author to occur commonly in sites in Eastern New York and adjacent Connecticut. Age ranges for the point cited by him are 4200 to 3500 radiocarbon years B.P.

Reinforcing the likelihood of peoples of this time period at Indian Rock House is the recovery of another point of this general type (Figure 15, D) at the juncture of the "A" and "B" soils, -6 inches (15 cm) in Unit C/5. It is made from milk quartz, a widely occurring material over much of the Eastern United States. Primary position of the point in this unit is to be questioned, as there was much disturbance in the upper levels here. A related morph of this type point, came from -15 inches (35 cm) at juncture of the "B" and "C" soils in Unit F/5. It might be designated Brewerton Eared-Notched, after Ritchie's (1961) criteria. Again, he holds this type to be "Middle to Late Archaic" on his New York sites. It thus complements the two former points. It was probably in its original locus, as this unit was mostly undisturbed. The point (Figure 15, B) is made from semi-clear, crystalline quartz.

Typologically, we are on more uncertain grounds with the projectile illustrated in Figure 15, F. Its small size and general lack of "crisp" outline, argue against its being a Susquehanna Broad point, but morphologically it is rather like that type in some respects (Ritchie 1961). It is made from white quartz (atypical for true representatives of this type). Most authors (Ritchie 1961; Witthoft 1953) place these points in the Transitional "Period," perhaps 3000 radiocarbon years ago. Our find was made at -12 inches (30.5 cm) in the "B" soil, associated with a feature suggestive of a onetime pit (Figure 14, a).

The next point (Figure 15, A) conforms generally to the type Lamoka Side-Notched, and is made from milky quartz. It comes from -6 inches (15 cm), at the "A"/"B" juncture. Ritchie (1961) assigns this type a wide geographic distribution, and a substantial time depth. It is thus not a very sensitive diagnostic, though it might be as late as 1700 radiocarbon years ago, and possibly associated with pottery makers who sojourned here.

The remaining point (Figure 15, C) is made from orange-red quartz, also a widely-occurring material, and might more properly be termed an unfinished point or point blank. The base shows some thinning, but the general impression is of an unfinished piece. It is interesting that points showing bilateral asymmetry, such as seems incipient on this one, have been recovered in this area previously (Powell, 1958). We prefer not to speculate further on this point; it comes from Unit E/5, 6-12 inches (15-30.5 cm) deep, and was most likely associated with the "B" soil.

POTTERY

An inventory of perhaps fewer than 50 generally nondescript sherds was recovered at Indian Rock House. In every instance, the sherds were associated with the "A" or the "B" soils. Most were body sherds: one was a conoidal-pot-bottom fragment; one was a plain rim fragment; and one (Figure 16) was a rim-and-shoulder fragment, showing affinity with the type Clason's Point Stamped. One diagnostic of this type (Smith 1950) is parallel, usually crenellated lines made by impressing the wet clay with the edge of a marine scallop (*Pecten*) shell, sometimes leaving negative impressions of the shell convolutions to one side, which our specimen seems to show. The ware is said by Smith (1950) to be typical of the East River Ceramic Tradition in coastal New York. This tradition has also been detected in ceramic inventories recovered in adjacent Connecticut (Powell 1958, 1963, 1965a, 1965b). All three sites are within 25 miles (40 km) of
Indians Rock House. Smith (1950) said the type was "typical" of the Clason's Point Focus of that Tradition, and he guess-dated it to the period 1400 to 1600 A.D. Our find came from Unit D/5 in the "A" soil at -6 inches (15 cm), and thus places representatives of the Late Woodland/Proto-historic Period at the site.

Most of the sherds are grit-tempered, with cord-marked exteriors. They are more suggestive of an earlier ceramic time than the Clason's Point ware—perhaps they relate to the Windsor Aspect, when such wares were popular in Connecticut. Closing phases of this Aspect, are as late, however, as those of the East River Aspect, so the grit-tempered wares could be late in time.

Some sherds have brushed and wiped interiors; it is not certain if fiber-tempered wares are present. That is, a few sherds show casts, and burned-out inclusions suggesting fibrous or organic aplastics, but these might just as well be accidental inclusions. No strictly shell-tempered ware was noted, either.

MISCELLANEOUS CULTURAL FINDS

Numerous flake scrapers and utilized flakes of native use and manufacture were found at all levels. The dark, flinty stones are thought to originate in the Hudson Valley, and may represent either trade or direct importations by early nomadic peoples. Hematite rubbing or "paint" stones were recovered. A non-pitted hammerstone (Figure 17, B) came from Unit B/10 at minus 6 inches (15 cm). A "problematical" is the lobate object, illustrated in Figure 17, C. It is quartz, and the wing-like appendages are carefully flaked. Figure 17, A shows the tip of a broken blade.

Also assignable to the Indian occupants are quantities of burned, broken marine shells encountered throughout the "A" and "B" soils. Species identified here include:
Clam (both *Venus mercenaria* and *mya*); oyster (*Ostrea*); and scallop (*Pecten*). No freshwater species were noted. The nearest salt water is about 12 miles (19 km) south. We recovered white-tail deer (*Odocoileus virginianus*) long bones, toe bones and teeth and mandible fragments. There are also several as yet untyped animal claws, probably birds of prey. A small rodent jaw with intact, curving incisor may be natural rather than cultural in origin. Charcoal grains were widespread at all levels.

A notable quantity of Euro-American trash from the Eighteenth and Nineteenth centuries was encountered in the shelter. Included are scraps of lead or pewter, many being "frozen splatters" dropped while molten. Interestingly, they occurred in proximity to a onetime hearth and stoned-up chimney, reported by several informants, but which was no longer discernible at the time of our work. This "hearth" is said to have been just a few feet southwest of coordinate A/5. From this same general area comes a small iron spoon, probably pewter-plated originally. It has a partially discernible touchmark in the bowl interior, and this is being reviewed by expert analysts, in hopes of a more definitive identification.

In E/5, in the upper levels of the suggested pit (Figure 14, a), and well above the Lamokoid projectile (Figure 15, A) found lower down, we encountered the articulated lower leg bones of a deer, with an associated lead musket ball. A lead button from these levels has been classed as "most typical" of the latter 1700's, by D. Rittner (pers. comm.), as are also fragments of fired creamware pottery. Additional ceramics recovered by us, and commented upon by him, are ironware sherds most typical of the period 1820-1850 A.D. Kaolin pipestems recovered at various locales in the shelter range from 4/64 inch (1.6 mm) to 7/64 inch (2.8 mm) in bore diameter, suggesting chronological placements from 1750-1800 A.D. One pipestem fragment, about an inch long, shows incipient wear on both ends, and might be a primitive "bead."

One of the most interesting cultural finds was a worn, silver Spanish Half Real, bearing the date 1789 and the Mexico City mint mark (H. Kaslove, pers. comm. 5/16/72). A coin similar in all respects save the date, and showing more clearly the markings, is illustrated in Figure 18. This find was made in Unit G/-10, in the "A" soil at 0-6 inches (0-15 cm). A Spanish coin seems a long way from home in the Connecticut woods, but it is to be remembered that coins of many nations were freely circulated in Colonial times.

INTERPRETATION

On completion of our work, and in agreement with the Parks, Recreation and Conservation Commission, we back-filled and levelled the floor of the shelter. Nevertheless, in only a matter of weeks, it was again being dug clandestinely by vandals and treasure seekers. Local legend associating Indians and other "mysteries" with the spot are likely so strong that the soil at Indian Rock House is fated to be regularly turned by generations yet unborn...

![Figure 18. A Spanish Half Real similar to the coin at Indian Rock House.](image-url)
Nevertheless, we hope our salvage study provides a break in this cycle, permits some legitimate inference about the spot, and lets us place on record some reasonable account of the ancient events which most likely transpired there.

We postulate, on the basis of typology and the associated soils and features, the presence of men at this spot perhaps as early as four thousand years before the present. In passing, we would like to note the presence of blocky, tabular "pseudofacts" and sharp flakes of quartz in the upper six inches of the "C" soil. Whether these finds hint at a tenuous, earlier underlying cultural horizon, we prefer not to say, but such a phenomenon has been postulated earlier for sites in our state (Byers 1959; Powell 1963).

The most probable first Indians to utilize the site, then, were Indians of the Late Archaic Period. They appear to have been affiliates of the Sylvan Lake Complex better known and described in New York (Ritchie 1961).

Perhaps three thousand years ago, Indians of the Transitional Period, or the Early Woodland Period, may have frequented the site. Tenuous support for their presence is the point showing "Susquehanna Broad" characteristics, and perhaps some of the early-type, corded and grit-tempered pottery. Certainly, Indians of the Late Woodland/Proto-historic time (1400-1600 A.D.) were here, as the Clason's Point Stamped vessel fragment mutely testifies. These latter people, too, were most probably the main importers of the marine shellfish, whose broken and burned valves we found in the shelter.

By early Colonial times of our own era, Euro-Americans were frequenting the site. To them may be attributed the kaolin pipestem fragments. The putative "bead" made from one such, may have belonged to some Indian associate of theirs. It is conceivable that soldiers of the Revolution may have stopped here. Two events of that War, the burning of Norwalk and the raid on Danbury, occurred within 10 to 20 miles (16 to 32 km) of the site. They may, indeed, have been melting lead and pewter to cast musket balls, and perhaps were the first builders of the crude hearth and chimney. Equally likely, the musket ball and the lead spatters could reflect use by hunters, casting balls for their black powder guns.

Post-Revolution Euro-Americans lost the Spanish coin (1789) on the site. The rockshelter may have seen a transient use as a hunter's camp and backwoods gathering spot through the nineteenth century, during which time fragile Ironstone dishes and other vessels were apparently brought into the shelter.

Certainly, by 1900 A.D., these earlier phases of the shelter's use were drawing to a close and the modern era of Boy Scout campers, picnickers and others had begun. To them, and to the treasure seekers who sprang from their ranks, may be attributed the potholes in the surface shelter, the numerous copper pennies, aluminum "pop tops", broken, machine-blown bottles, and obscene, spray-painted grafitti which now adorn the ancient walls at Indian Rock House.

Sic transit gloria mundi.

ACKNOWLEDGEMENTS

I thank the Parks, Recreation and Conservation Commission of Wilton, Connecticut, for permission to work at the site; H. Kaslove of The American Numismatic Society for the identification and comment on the Spanish coin; D. Rittner, Director, Pine Bush Historic Preservation Project, State University of New York, Albany, for his comment on some of the Euro-American artifacts; and various citizens of Wilton who volunteered information or helped in other ways.
REFERENCES CITED

BYERS, DOUGLAS S.

POWELL, BERNARD W.

RITCHIE, WILLIAM A.

SMITH, C.S.

WITTHOFT, JOHN
THE AUTHORS

Russell J. Barber is Research Director of the Institute for Conservation Archaeology, Harvard University, and has been a member of MAS for twelve years.

William F. Bowman is an active member of the Eastern Massachusetts Archaeological and Geological Research, Inc.

Massachusetts Historical Commission is the agency of state government most closely concerned with archaeology and historic preservation in Massachusetts.

Bernard W. Powell is founder and Director of the Northeast Archaeological Researchers (NEAR) and current member of the Committee on American Archaeology of the Archaeological Institute of America.

Arthur C. Staples has been a member of the Cohannet Chapter of the MAS for many years, and has served as Treasurer of the MAS.

William B. Taylor has been an active member of the MAS for many years, and is now a Trustee of the MAS.

This final descriptive report contains the largest compendium of data from a single New England site ever published... a feat not likely to be equalled for many years.

Although Wapanucket—with eight excavated loci totaling 5,697 two-meter squares—has an important Paleoindian component, it is primarily an Archaic site with separate living and ceremonial areas. It is located in southeastern Massachusetts on Assawompsett Pond.

The report opens with a brief description of the site's geology and topography, then discusses excavation methods, soil stratigraphy, the artifacts and the classification system used, including its limitations.

Each locus is discussed separately, covering soils, artifacts, horizontal and vertical distributions and plans, features, flotation results and lithics, plus burials and house floors when appropriate.

A summary description integrates the data from the eight loci—some 15,000 artifacts with approx. 10,000 typologically classifiable and 829 features—in terms of Paleoindian, Early, Middle and Late Archaic, Woodland and Historic cultural components. Palynological data are presented as well as vertical and horizontal distributions of diagnostic points over the entire site.

Dr. Robbins presents a descriptive rather than interpretive analysis, aiming at completeness of recovered evidence. Among the many illustrations are superb renderings of significant artifacts, including ceremonial blades and Paleoindian artifacts.
NOTES TO CONTRIBUTORS

AUTHORS of articles submitted to the M.A.S. Bulletin are requested to conform to the following regulations.

Manuscripts must be typed as originals with two carbons (or photocopies). Margins must be 1½ inches (38mm) on both sides. Corrasable paper should NOT be used. Originals and copies are to be sent to the Editor for evaluation and comment.

Typing is to be on one side of paper only with at least double spacing. Proper heading and bibliographic material must be included.

Manuscript headings should be prepared as follows:

THE PONKAPOAG SITE: M-35-7

Robert A. Martin

Bibliographic references are to be presented as follows:

GOOKIN, D.
1970 Historical Collections of the Indians of New England (1674)

They should be listed alphabetically by author; several references by the same author should be listed chronologically by year.

Intratextual reference citations are to include the author's name, date of publication, and the page, plate, or figure number, all enclosed in parentheses. as follows:

(Bowman & Zeoli 1973:27) or (Ritchie 1965: Fig 12)

Illustrations must be submitted to the Editor as originals and must conform to the following set of standards:

1. All illustrations must be planned with the page size in mind, either full page, half page or quarter page. Allowance must be made for caption. Special cases must be discussed with the Editor before illustrations are made.

 Drawings should be made for same size reproduction, and must be sent as originals executed in India ink. NO WASH DRAWINGS OR PENCIL RENDERINGS ARE ACCEPTABLE.

 Photographs must be glossy prints with HIGH CONTRAST. Standard 5"x 7" or 7"x 9" work out very well. Special problems, as with the drawings, must be referred to the Editor before preparation.

2. All illustrations are called Figures (including maps). They are to be numbered on the back in order of reference from the text. Every item in drawings or photographs must be properly identified either by number or letter. All lettering must be clear print and legible. All persons in photographs must be identified. Captions should not be considered part of the illustration.

 Captions for figures should be typed on a separate sheet in order, numbered to correspond to the figures. Scales should be included with all figures for which they are appropriate, and they must be LINEAR (no "full size" notations).

 Dimensions and distances should be given in English and metric units, or metric alone. The two systems should not be mixed within a text. If feet and inches are used, they are to be spelled out (no ' for feet nor " for inches).

THE EDITOR is receptive to archaeologically serious contributions of any reasonable length. Long pieces can usually be condensed effectively if they exceed the limits of our publication. The Editor welcomes short pieces and encourages contributors to write them.