4-27-2011

Chemistry of the Matfield River

Follow this and additional works at: https://vc.bridgew.edu/wal_projects

Part of the Environmental Monitoring Commons, and the Natural Resources and Conservation Commons

Recommended Citation

This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts.
CHEMISTRY OF THE MATFIELD RIVER, EAST BRIDGEWATER, MA
Getting to the site
Stream Chemistry

Chemistry data collected from the Matfield:

- Dissolved oxygen
- Temperature
- pH
- Conductivity
- Nitrate & Phosphate concentration
The Matfield River
What can we learn from it?

• How to collect field data
• How to analyze and interpret the data
• Learn chemistry and its application
Dissolved Oxygen

- Dissolved oxygen is a gas dissolved in water.
 - Dissolved oxygen is important because it tells us what can live in the water.
 - It is measured in milligrams per liter.
 - Saturation: The greatest concentration of oxygen that can be dissolved in water at a given temperature.

\[
\text{% saturation} = \frac{\text{mg/L DO measured}}{\text{mg/L DO for saturation}} \times 100
\]

- mg/L=parts per million

- Oxygen diffuses into the water in streams both day and night as water travels over the rocks.
What Affects Dissolved Oxygen

• **Temperature** affects the amount of oxygen that can be dissolved at any time. Generally as the temperature rises, the amount of dissolved oxygen decreases.
 – For our data, the highest temperature was 13.64°C with 106.7 % saturation.

• If **algae and plants** are abundant, the dissolved oxygen level is higher during the daytime and lower at night and that is known as diurnal variation.
What Dissolved Oxygen Affects

• Dissolved oxygen affects what kind of species and organisms are found in the water.

• Many organisms can’t live where there is low oxygen and warm temperatures.

• Salmon and trout have to live in water that has a dissolved oxygen level above 7 ppm.

• A 4 ppm (or below) dissolved oxygen level indicates a pollution problem.

• A difference of 2 or 3 ppm could mean life or death for the organisms and species in the water.
Classes of Rivers

• A class A river is a river that is a source of drinking water.

• A class B river is a river used for recreation.

• A class A river can’t have the dissolved oxygen level at anything less than 6.0 mg/L. Our data doesn’t have any level less then 9.67 mg/L.

• A class B river can’t have the dissolved oxygen level below 5.0mg/L for a wwf.

• Class A can’t have saturation levels below 75% saturation. Class B can’t be below 60% saturation for a wwf.

• Our data doesn’t have any level less than 91.6% saturation.
Matfield River, East Bridgewater MA, November 9, 2010

Time over 22 hours dissolved oxygen in mg/L no less than 6.0 mg

- Typical Class B River
- Matfield River
What is pH?

pH is the measurement of acidity in a solution.
pH levels : what it means

• The pH level of a solution tells us whether a solution has an excess concentration of Hydrogen protons. Hydrogen protons come from acids such as Hydrochloric acid, Acetic Acid, Sulfuric Acid, and Carbonic Acid.

• Having a high pH level means…
 - that it is alkaline, its basic.
 - hydrogen ions are being taken out of solution.

• Where is the middle?
 - seven is neutral, its not an acid or a base.

• Having a low pH level means…
 - Its acidic
 - When it is lower than 7 it is acid.
 - Excess concentration of Hydrogen ions are in the water.

• The pH range for a Class B river in Massachusetts is 6.5 - 8.2.
pH Background Information

What affects pH?
- air pollution causes decrease in the pH of precipitation, acid rain.
- large amounts of snow acidic snow melts into water sources

What does pH affect in the river?
- it affects aquatic organisms living in the river
- it affects whether or not the bedrock in the river neutralizes the acid rain flowing into the river
East Bridgewater, Matfield River, 11/09/10

pH Versus Time

Time in Hours

Series1

pH units
Is there a pattern in the graph?

• no distinct, recognizable patterns. The only observation we have is that the graph does not rise / fall equally.

• peaks @
 – 2:00 am
 – 7:00 am
 – 9:00 am
 – 10:00 am (highest)

• drops @
 – 2:00 am – 5:00 am
 – 6:00 am – 7:00 am
 – 10:00 am
Our pH level is a little high.
Our average pH level is 9.35
East Bridgewater Matfield River 11/09/10
pH levels compared to permitted levels/Shouldn't exceed 8.3

Time Over 22 hours

pH levels/Shouldn't exceed 8.3

Series 2
Series 1
As shown in the graph….
(average pH measurements)

- Our level of pH is higher than the acceptable pH level of a class B river.

- A class B river has the highest acceptable pH level of 8.3, the data from our site has an average pH of 9.35.

- The pH level is 1.05 over the limit of a class B river.
Alkalinity

- Alkalinity is the ability of a river to neutralize an acid.
- It is not directly affected by pH, but rivers with a high alkalinity are able to withstand higher pH levels.

- Alkalinity is the measurement of negative ions such as hydroxide (OH)^{−}, carbonate (CO_3)^{−2}, and bicarbonate (HCO_3)^{−} dissolved in water.
Buffering

- A solution that is buffered is able to resist changes in H even when a strong acid or base is added.
- Buffering is caused by the presence of weak acids or weak bases.
- The weak acids/bases cancel out any strong acids/bases added to solution.
- Buffering is vital in maintaining pH levels healthy for pH sensitive organisms.
Nitrates and Phosphates
& Conductivity
& Conductivity
Nitrates and nitrites are families of chemical compounds containing atoms of nitrogen and oxygen. Nitrate is always found in very small amounts because of the ongoing cycles of growth and decay.

In healthy, balanced ecosystems, bacteria turns ammonia into nitrate.

88% of the nitrates that enter the nations waterways come from nonpoint source pollution. (because their source is often difficult to pinpoint or control from a single location)

Excessive nitrates entering a lake or stream will cause massive growth of algae and other plant life in the water. (this “bloom” can cause water to become murky and raise its temperature)

Many organic pollutants, however, such as sewage or manure, contain much higher levels of nitrate than those found naturally in streams.
Phosphates, which contain phosphorus, are another plant nutrient that occurs naturally in low levels in the environment as part of the ongoing nutrient cycle.

They originate from many sources, of which detergent is one of the most common (many manufacturers have reduced the amount of phosphates that are out into detergent).

84% of the phosphates entering the nation’s surface water are from nonpoint sources.

Phosphates can cause problems in aquatic ecosystems at levels as low as 0.5 ppm.
Matfield River, East Bridgewater, MA
Nitrogen Nitrate (N-NO₃)
November 9, 2010

- machine detection limit is .1 mg/L
- class A water std: N-NO₃ < 1.0mg/L
Soluble Reactive Phosphorous (SRP)

November 9, 2012

-machine detection limit is .008 mg/L

-Class A water standard: SRP < .1 mg/L
In General

- Conductivity is a measure of the ability of water to pass an electrical current.

- Conductivity in water is affected by the presence of inorganic dissolved solids such as chloride, nitrate, sulfate, and phosphate anions (ions that carry a negative charge) or sodium, magnesium, calcium, iron, and aluminum cations (ions that carry a positive charge).

- Conductivity is affected by temperature. The warmer the water the higher the conductivity.

- Conductivity in streams and rivers is affected by the geology of the area through which the water flows.
HYDRO LAB DATA

| Sp Cond_mS/cm | 0.168-0.593 | 0.566 | 0.515 |

Time vs. Conductivity

- **SpCond-mS/cm**
 - 0.168 - 0.593
 - 0.566
 - 0.515

Series 1

- Time vs. Conductivity graph showing the data points for Sp Cond_mS/cm from 0.168 to 0.593.
Natural conductivity level without human influence would be found 0.05 Ms/cm or less (EPA)
In the Matfield River

• At 16:00, conductivity was about .58 mS/cm.

• Mid-way thru the day, at 3:00, conductivity was still at about .58 mS/cm.

• At 9:00 AM, conductivity dropped dramatically from about .58 mS/cm to about .17 mS/cm at the lowest.

• For the rest of the day, conductivity stayed at about .17 mS/cm or higher.
What does this mean?

• The conductivity dropped dramatically at 9 in the morning.

• We are not sure what this could mean and we would have to do further research or conduct another experiment such as going to the same river at a different time of year and comparing the two sets of data. Another option is to go to another river in East Bridgewater and conduct the same experiment; then compare the two sets of data.
Temperature

• What is Temperature?
• What affects the temperature of a river?
• What does temperature have an effect on?
• What does the temperature tell you about the quality of the water?
• Are the temperature readings from a 22 hour period significant?
What is temperature?

• Temperature is a measure of molecular vibrational energy
• The measures of temperature are recorded in °C
• The temperature recordings of the river water were taken by a hydrolab instrument every hour for a 22 hour period
What affects temperature?

• Vegetation - streamside vegetation can create shade that cools the temperature, our river was surrounded by trees
• Depth - shallower water is warmer than deeper water
• Outside water sources - ex. Runoff or groundwater that enters the river can make the river warmer
• Color – dark colored water (created by mud) absorbs more heat
• Location – the surrounding climate can affect temperature (ex. A river in Canada would be colder than one in Brazil)
• Time – the time of year and the typical surrounding temperatures for that season can affect water temperature, our data was taken in November
What does temperature affect?

- **Dissolved Oxygen** - more oxygen can be dissolved in colder water than warm water.
- **Dissolved phosphates and nitrates** – solids such as phosphates and nitrates dissolve more easily in warmer water.
- **Photosynthesis** – increased temperatures cause an increase in photosynthesis if there are sufficient nutrients.
Hydro Lab Data

Matfield River

November 16 and 17, 2010

<table>
<thead>
<tr>
<th></th>
<th>Range</th>
<th>Median</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature_°C</td>
<td>11.77-13.64</td>
<td>13.08</td>
<td>12.91</td>
</tr>
<tr>
<td>pH_Units</td>
<td>9.21-9.57</td>
<td>9.32</td>
<td>9.77</td>
</tr>
<tr>
<td>Dissolved Oxygen_mg/L</td>
<td>9.67-11.01</td>
<td>10.09</td>
<td>10.13</td>
</tr>
<tr>
<td>% Saturation DO</td>
<td>91.6-106.7</td>
<td>96.25</td>
<td>96.67</td>
</tr>
<tr>
<td>Sp Cond_mS/cm</td>
<td>0.168-0.593</td>
<td>0.566</td>
<td>0.515</td>
</tr>
</tbody>
</table>
Matfield River, East Bridgewater November 9, 2010

Temperature Versus Time Josh Murphy

Time in Hours

Temperature in Celsius

Series 1

[Graph showing temperature variation over time]
The Matfield River

- Throughout the 22 hour period that temperature, the range of temperatures was 11.77-13.64 °C
- The temperature data collected for this river is comparable to that of a Class B river because in a Class B cold water fishery the temperature cannot exceed 20 °C and our average temperature was 13.08 degrees
Presented by:

<table>
<thead>
<tr>
<th>Nicole Abbot</th>
<th>Brandyn Evora-Rosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryan Amadea</td>
<td>Kayla Hogan</td>
</tr>
<tr>
<td>Kayla Berry</td>
<td>Bridget Irving</td>
</tr>
<tr>
<td>Rachel Blauner</td>
<td>Megan McCarthy</td>
</tr>
<tr>
<td>Jared Burns</td>
<td>Lindsay Montville</td>
</tr>
<tr>
<td>Shaelyn Casey</td>
<td>John Moura</td>
</tr>
<tr>
<td>Marissa Coe</td>
<td>Sarah Stetler</td>
</tr>
</tbody>
</table>

Special thanks to Kim McCoy and the Watershed Access Lab for lending us the hydrolab equipment and assistance.