1-1965

Bulletin of the Massachusetts Archaeological Society, Vol. 26, No. 2

Massachusetts Archaeological Society

Follow this and additional works at: https://vc.bridgew.edu/bmas

Part of the Archaeological Anthropology Commons

Copyright
© 1965 Massachusetts Archaeological Society

This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts.
CONTENTS

SUWANNEE POINT FINDS IN FLORIDA
Jesse Brewer .. 17

A POINT PENINSULA SITE, MANITOULIN ISLAND, LAKE HURON
Thomas E. Lee .. 19

TWO DUXBURY POTS
William S. Fowler .. 30

PUBLISHED BY THE
MASSACHUSETTS ARCHAEOLOGICAL SOCIETY, INC.
Society Office, Bronson Museum, 8 No. Main Street, Attleboro, Mass.
MASSACHUSETTS ARCHAEOLOGICAL SOCIETY

OFFICERS

President
Harold F. NyeMarion, Mass.

First Vice President
Donald C. Wilder86 Brewster Avenue, South Braintree 85, Mass.

Second Vice President
William B. Brierly9 Hawthorne Street, Millbury, Mass.

Secretary

Financial Secretary
Mabel A. Robbins23 Steere Street, Attleboro, Mass.

Treasurer

Editor

Trustees
Society Officers and 2 Last Past Presidents
Walter Thomas, Jr.Edward G. BielskiRobert A. Martin
Frank KrempRobert E. ValyouGeorge S. Gibb

MASSACHUSETTS ARCHAEOLOGICAL SOCIETY BULLETIN, published in four Numbers of one Volume each year, commencing in October.

Price this issue $.75
(Subscription by membership in the Society: $3.00)

Note: Address all requests concerning membership to the Secretary; all orders for back Bulletin numbers (4 for $1.00 to members) to the Editor; and mail Society dues to the Financial Secretary. Exception: Classification No., Vol. 25, #1 — $1.00 to members, $1.50 to non-members.

BRONSON MUSEUM
Tel. 222-5470

This is the Society’s museum, 5th Floor of the 8 North Main Street Building, Attleboro, Mass. —Museum hours are from 9:30 to 4:30, Mondays, Tuesdays, and Thursdays. For special arrangements to visit on other days, contact the Director, Maurice Robbins, or the Curator, William S. Fowler at the Society Office, Bronson Museum, Attleboro, Mass.

The Museum includes exhibits of artifacts and seven dioramas portraying man’s prehistoric occupation of New England. The displays are arranged so as to show man’s development through four culture stages, from early post glacial times.

The most recent diorama extends 15 feet across the front of the museum. It depicts an Archaic village of seven large and unique wigwams as indicated by their foundations, excavated at Assawampsett Lake by the Cohannet Chapter. Human figures to scale make the scene come alive and help create what unquestionably is an outstanding addition to our ever growing museum displays.
Editor's Note: This report seems important because it concerns projectile points believed to be the oldest in Florida, and of an age somewhat earlier than that of Paleo Fluted points in New England. Comparisons of this kind, especially when they involve evidence of the first appearance of man in some particular area of the New World, should be of the greatest interest to all, no matter how remote that region happens to be from the area being compared. Of a more personal nature, the contents of this paper are of interest because they represent what one of our Charter members has accomplished by persistent effort over the years.

For the past ten years, Mrs. Brewer and I have spent our winters in Florida along the Gulf Coast, and we have given a great deal of time, while there, to surface-hunting for Indian artifacts. On the whole, good luck has attended our labors until the last two years, when we found our hunting grounds covered with retirement homes. When we first began our hunting, many new developments of various kinds were in the first stages of grading, etc., and these afforded some good hunting. Other lucrative spots where many recoveries were made lay between high and low tides on the Gulf shore. For instance, at low tide we would wade as much as fifty to one hundred yards into the Gulf, and pick up points from the ocean floor. At one place, I noticed a breakwater built of cement and flint chips raked up from the area. Doubtless a good many artifacts, also, were imbedded in that cement wall.

We had several experiences of a more varied kind than those having to do with recovery of artifacts. For example, one day Mrs. Brewer with an old can cover dug from a partly destroyed mound — a coral snake — which discouraged further digging for the day. Besides such occasional nerve tingling finds, some 500 perfect and broken points were recovered, fifty of which have rare beauty in color of stones and shapes.

One day in 1960 stands out from all the rest, for on that day Mrs. Brewer made a prize find. We were hunting along the west side of Route 19 that runs along the shore at varying distances from the ocean. It was at a spot 3½ miles inland from the shore, about 20 miles south of Suwannee River, and some 30 miles north of Hillsboro County. In this area most of Florida's earliest points have been found over the past number of years. They have been called Suwannee points, since the first specimens to be identified as such, were recovered from a site on the Suwannee River. We were hunting over the soft shoulders of the highway, directly across from Tarpon Zoo, where new fill had been spread. Suddenly, Mrs. Brewer saw a large ivory
colored flint spear point of unusual shape lying at her feet (Fig. 1, #2). She showed it to me, but although I realized she had found a prize specimen, I was unfamiliar with the type and could not classify it. However, since it came from road fill, it seemed probable that it had been conveyed from some other location — but where?

At once, we tried to figure out a probable source for the road fill. In this part of Florida, the rolling countryside displays a hummocky landscape, with innumerable hillocks four to ten feet in height. When building roads, the custom is to obtain fill for road shoulders from cuts made through these hillocks. This presented a possible clue as to the source of the ivory colored point. After searching for cut-out hillocks from which fill had been taken, we located such an excavation. It lay about three miles north of the place where the first point (Fig. 1, #2) had been found. Here, sand had been removed to a depth of about 5 feet, which had exposed an excavated sand bank. After looking around a little, I came upon the second find (Fig. 1, #1). Unbelievable, as it may seem, there lay another large ivory colored flint point, somewhat like the first. It was lying at the bottom of the hillock cut-out, 5 feet from the top. With it appeared several flakes of the same light ivory colored flint as that of the point, indicating the probable occupational level of this deposition. We concluded that the first point may have come from this very location with fill taken from the cut-out, since both were of the same local fine grained flint of a light ivory shade, and both of about the same shape. They are relatively thin and carefully worked with expert retouching. They have thinned bases, not fluted, with eared basal points, while all basal edges, side and bottom, are ground smooth.

Some days later, continued searching for similar hillock cut-outs brought us to another location a few miles distant, but in the same general area. Here, another sand bank was exposed, which seemed to offer an opportunity for a further search for artifacts. After excavating for only a short while in the sand at about the same 5 foot depth as that at the other hillock, I came upon numerous large flakes of the same ivory colored flint as that used for the two prize points. Soon, two worked artifacts were uncovered, made of the same flint and are illustrated (Fig. 1, #3,4). One is an elongated, slightly curved flake with serrated retouched edges on two sides; is presumed to be a Flake knife. The other is a large unifaced oval spall with carefully retouched edges all around; chips have been struck off from one face. This type of working seems to suggest that this tool may be a large scraper of some kind. Here, it seems was another occupational level at the same depth as that of the second point. It may have been coeval with it, since stone material and chipped workmanship were similar in both instances.

After two years of fruitless search for someone who could classify the points, I thought of my good friend, Ripley P. Bullen, Florida State archaeologist, as a likely source of information. So, this past winter, on our trip to Florida, I took the points with me. We met Ripley and Mrs. Bullen at the State Museum in Gainesville, and showed them our two unique points. To them we are indebted for the explanatory summary that follows.

SUWANNEE POINTS

As a result of my talk with Ripley Bullen, Curator of Social Sciences at the University of Florida, it appears that our two flint projectiles are Suwannee points. They represent the earliest type known in Florida, of which perfect recoveries are rare. With Bullen's kind assistance the following information about these points has been made available.

Original illustrations and description of Suwannee points, as found in 1948 on a site near the Suwannee River, were published by Simpson in that year. The points were first named by Coggin (1950), and in 1958, Neill gave a good descriptive summary of them, from which the following is derived.

Suwannee points are relatively thin, lanceolate in shape with a slight basal constriction, concave base, a tendency to have basal points appear as ears, and with some basal edge grinding. Only rarely are these points fluted, but frequently basal thinning is present. For their comparatively large size, these points are quite thin. Burkhart's collection contains 3 complete specimens 2 to 3" long.

Typologically, Suwannee points are related to Eastern Clovis, Ohio, and Cumberland Paleo fluted points. Therefore, they have been assumed to be the earliest points in Florida of the Paleo period. However, of more significance is their stratigraphic source, which seems to support this typological deduction. Simpson (1948) mentions a Suwannee point that was found resting on clay beneath 5 feet of undisturbed soil in Hillsboro County. Another find was made at Silver Springs site at a depth of 90 inches, and at Paradise Park five fragments
A POINT PENINSULA SITE, MANITOULIN ISLAND, LAKE HURON

THOMAS E. LEE

Editor's Note: The importance of this report lies chiefly in the interpretation of its ceramic evidence. Dr. Lee has placed it in New York State's Point Peninsula cultural period, and his supporting arguments seem well grounded. To go a step further, it is interesting to note similarities between it and Stage 2 pottery of New England, estimated to have existed about A.D. 1000. While a considerable distance separates Lake Huron from New England, traits are known to have diffused over even greater distances. However, this is not to imply that peoples and their cultures were necessarily transported with the traits, although culture affiliation of some kind, no doubt, often followed such diffusion. Cultural movements of this sort, which at some time during their course must of necessity have involved the transplanting of peoples and their way of life into New England, probably extended over a long span of years. Therefore, it would seem reasonable to find Stage 2 ware occurring several hundred years later than that of Point Peninsula, since New England was settled by migrants emanating from the west, some, doubtless by circuitous routes.

A BRIEF REVIEW OF SHEGUIANDAH SITE, REFERRED TO IN THE TEXT

Sheguiandah site, Manitoulin Island, at the north end of Lake Huron, Ontario, is the oldest known trace of man in Canada. Discovered in 1951 in an almost undisturbed condition, it was investigated by Lee and a large crew during four seasons. Although it is outwardly a quarry site, it differs from most in that neither blanks nor finished tools were carried away, with very few exceptions.

Part of the site was a hilltop, which was used for habitation. Stratigraphy was demonstrated, both in cultures and soils. At least five occupations occurred over a startling spread of time. Three of the cultures are post-Lake Algonquin, hence not older than the 9,000 plus years ago, indicated by a Carbon 14 date obtained from a peat deposit in a site swamp. Also, artifacts came from glacial deposits beneath the peat.

An early projectile point level may represent several cultures, for there is wide variation within the assemblage with close resemblance to many of the Paleo, as well as slightly later points of the West. On top of them, hence younger, is an amazingly prolific culture level, closely related to George Lake I at nearby Killarney, Ontario, evidently entirely lacking in stone projectile points. Tools are very large bifaces, along with various scraping, cutting, and graving implements. Ground stone seems to be entirely absent.

But the more significant and startling aspect of the site lies in the presence of at least two pre-projectile point cultures, contained in unsorted glacial tills lying below the Paleo level. These are necessarily older than the time of the last advance of glacial ice over the hilltop. Quantities of large tools, usually broken, were obtained from these tills in primary position, determined by teams of geologists working in the trenches. Furthermore, a few artifacts came from sorted meltwater deposits beneath the tills, and from still older deposits beneath a paving of heavy boulders. Four of the geologists, Drs. Antevs, Sanford, Liberty, and Terasmae — those who went into the evidence most thoroughly, each using a different line of approach — set a minimum date of 30,000 years ago for the early occupations of the site, treating them as a unit. Because of this, and because the early tool assemblages apparently have no parallels nearer than Spain, the possibility of Interglacial Man was discussed in all seriousness and not dismissed. Regrettably, further investigations and full publication were halted by the internal politics of archaeology.

THE POINT PENINSULA SITE

In the course of my archaeological survey of
Manitoulin Island, Ontario, for the National Museum of Canada in 1951, a minor but rather interesting site was discovered by my University of Toronto assistant, W. D. Bell (Lee 1953). Just a few rods from the eastern base of the hill on which lies the famed Sheguiandah site and some 520 feet east of the prominent Great Lakes Nipissing notch that forms the eastern boundary of that site, is a gently terraced and partly cleared area, sloping southward to Sheguiandah Bay (Fig. 2).

There, close to the waters of the Bay, just where University of Michigan archaeological survey parties had picnicked, Mr. Bell found pottery, firestones, and quantities of chert and white quartzite chippings on the surface. A little troweling quickly produced Vinette Dentate and pseudo-scallop-shell sherds, thereby identifying the culture to our satisfaction at the time.

As it developed, our 17-tent camp for the 1952 Sheguiandah expedition was pitched quite near the point of Bell’s discovery. In clearing platforms and digging shallow trenches for the tents, we came upon many artifacts (Lee 1960a, 23). These included quartzite scrapers, flint* projectile points, and a polished black slate amulet (?) or blade. Firestones and quartzite flakes, we saw, were distributed across old beach terraces between 9 and 27 feet above the level of Lake Huron, over an area roughly 300 feet square. No attempt was then made to establish maximum depths of cultural material. However, a University of Toronto assistant, when asked to prepare a dry and well-drained place for our supplies tent (Fig. 2), introduced a novel idea in camping — like the legendary purple cow, one that I had never seen or expected to see and do not recommend — by digging a nice rectangular pit under a tree, slightly larger than the tent and about 16 inches deep, in which to set the tent. Quartzite flakes were still coming out of beach deposits at that depth. In thick undergrowth nearby, a mound of small fieldstones was found (Fig. 2), such as often indicates pioneer land clearing. On the chance that artifacts were also picked up and included in the pile, the entire mound was turned over, rewarding us with an unusual axe form and a fine groved maul of a type commonly found on the prairies of the West, but very rarely this far east (Lee 1960a, 23). These, coupled with the finding of incised pottery, offered some hope of cultural stratigraphy.

From the moment of announcing the discovery of the Sheguiandah site, serious efforts to discredit it were observed. Armchair authorities, without ever coming near the site or consulting me about the evidence, were able to pronounce it a Point Peninsula workshop, “neither very old nor important,” as some of them told my employer. When neither logic nor evidence made any dent in their influential armor, I was forced to devote whatever precious time could be spared to investigation of the Point Peninsula “camp”. My crew of unpaid men and women responded nobly to the challenge by working late in the evenings, after completing long working hours on the Sheguiandah site, our primary purpose in being there.

Serious excavations in an area behind the tents (Fig. 2) were begun in 1954. A total of 727 square feet was carefully excavated to sterile subsoil. To this may be added various pits and trenches about camp, bringing the total area excavated to 961 square feet.

A complete record of the artifacts obtained from the camp site in four years is not now available to me. This report is principally based on an analysis of the 2,188 specimens found in 1954 (of which 2,059 are sherds), together with 201 cores and 6,551 chips of several materials—hastily undertaken in the last days of the highly competent administration of the Museum by the thoroughly honest, sincere, and dedicated Director, Dr. Jacques Rousseau.

TRENCHES

For various reasons, several deep pits were dug about the camp site, each providing a general picture of deposits of boulder clays (boulders up to 5 feet in diameter), sorted gravels, cobbles, and shales—the results of glacial and beach actions. Only two of the pits were dug for the sole purpose of obtaining information, however. These were situated in a swampy area close to the base of the Sheguiandah site hill, at its final eastern slope, hence upon an Algoma stage beach level. Carried to a depth of 50 inches, they showed an excellent sequence of humus, red clay, grey clay, and various deposits of compacted brownish tills. Several sharply defined ice wedges were seen in the latter, each filled with fine grey sand.

There was no suggestion of association of aboriginal occupation with any of these natural occurrences, with the single exception of the chips observed in the pit at the semi-subterranean supplies tent. Certainly the chips revealed there at

*“Flint” is used throughout, as being a more widely-used and popular term to describe the igneous stone, scientifically called “chert” by some.
Algoma Beach

1952 Camp

Sheguiandah Bay

Fig. 2. MAP OF POINT PENINSULA SITE, Manitoulin Island, Lake Huron.
16" depth were a part of the beach deposits and, as such, must have a time depth not much later than the maximum of Algoma.

The principal excavations were performed along either side of an old rail fence which runs east-west behind the tent area. The selection was partly because of stronger surface indications of cultural material in the underbrush near the fence, and partly because of an assumption that an open pasture field adjacent to it on the north had once been cultivated (I believed that its surface was far too smooth to be natural). However, in the area actually excavated, several factors indicate that here, at least, very little disturbance had occurred. Cultural material seldom extended more than 4" below the surface, and was often confined to the upper 2". Shale fragments became increasingly coarse, downwards, with quite large — though not bedded — slabs within 2" of the surface in places. Most convincing, however, were two stone-lined pits (Fig. 2, trench 7), entirely undisturbed, coming almost to the surface. They were quite similar, close together, and elongated, with a NE-SW major axis. Overall measurements were 42 x 21" and 43 x 18", but in each, the greatest width was near the northeast end, tapering to narrow troughs at the southwest. Maximum depth was 14" and no evidence of burning was seen. Potsherds within the pits were identical with those found outside.

The presence of small and very delicate bones in the soil came as a surprise. We had grown accustomed to the almost total absence of bones in the highly acidic soil of the nearby Sheguiandah site. However, tests showed a neutral soil here, accounting for the remarkable state of preservation.

ARTIFACTS

All of the artifacts, with the exception of a broken stone axe, a grooved maul, and certain historic materials from a burial, are regarded here as representing a single moment in time. Although the excavations were performed under something less than ideal conditions, it is frequently possible to separate the levels at ½", 1", 1½", or 2" intervals. Hence, although the site is shallow, it should be possible to distinguish any significant changes such as might have occurred with very much extended occupancy or with repeated occupancy, particularly if by different cultures. However, the most careful study of the problem from every possible angle, including the vertical distribution of flakes of particular materials and the associations of unusual cores with the flakes from them, provides no indication whatever of cultural stratigraphy in our trenches.

POTTERY: 93 rim sherds, 1,966 body and decorated sherds; sherd thickness 1/8-3/8". Since Point Peninsula decoration tends to extend over the entire surface or large portions of vessels, it is pointless to attempt any separation of body sherds as such. Efforts to correlate design with techniques, rim sections, or lip shape yielded nothing of interest or recognized significance. Insofar as there are sufficient sherds for demonstration, these features were used in almost any combination. Coiling was the method of manufacture throughout, apparently, as coil breaks are conspicuous in association with every decorative technique. The very heavy interior channeling, so common on early or middle period Point Peninsula sites across Ontario, was present but far less conspicuous here.

Fig. 3. POTTERY RIM CROSS SECTIONS, Point Peninsula Site, Manitoulin Island.
Of the 93 rims, six divisions were made on the basis of cross sections (Fig. 3): straight, 13; tapered, 28; slightly to much everted, 29; incurved, 4; thickened, 17; and thinned, 2. Lips were usually flat or rounded. Outsloping or beveled lips were a common feature, but only two rims were conspicuously insloping. Only one tapered to a very sharp lip. Lip decoration was usually omitted or applied in various punctates. One specimen was lightly notched.

Rim decoration most frequently occurred in vertical (Fig. 4, #10, 25, 34); oblique, either left or right (#9, 11, 26); or horizontal elements or rows of elements, either singly or in combination (#18, 20, 23, 35) — usually in the form of a series of impressions; pseudo-scallop-shell (#18, 19); wavy paddle edge (#8-13); cord-wrapped stick (#25-27); carved paddle (#14); thong-wrapped stick; cord-wrapped paddle; or fingernail (#13, 22).

Horizontal patterns were in two parallel rows of cord impressions or pseudo-scallop-shell. On eight sherds, these were combined with left-oblique elements. Very short and deep punctates formed the decoration of eight sherds (#4-6), arranged in from one to four horizontal rows. Some were produced with knotted cord (#7), others with pointed tools which produced interior nodes. Genuine herringbone was not found, but sherds were decorated with a coarse corded-stick impression in horizontal bands of left and right oblique, alternately, somewhat resembling herringbone (#27).

Four rims, probably from one vessel, were decorated with right oblique pseudo-scallop-shell impressions, dropping from the lip in left-oblique plats (#15). A single horizontal row of external bosses occurred just beneath a broad external channel near the lip.

Body and decorated sherds show a wide range of techniques. The majority (1,350), however, were entirely plain. Pseudo-scallop-shell occurred on 111 sherds; criss-cross incising on 23; criss-cross with knotted-cord punctates on 33; cord-wrapped

Fig. 4. DESIGNS FROM RIM SHERDS, Point Peninsula Site, Manitoulin Island.
stick on 62; cord-wrapped stick with paddle-edge punctates on 4; cord-marked on 27; cord-impressed on 9; knotted-cord punctates on 31; paddle-edge punctates on 192; unidentified punctates on 32; unidentified punctates with paddle-edge punctates on 7; cord-wrapped paddle (one interior) on 2; carved paddle on 36; combed (paddle edge) on 4; dragged paddle-edge on 1; dentate (slanted paddle-edge) on 6; malleated on 1; twig-roughened on 1; wiped on 3; thong-marked on 8; incised on 9; and trailed on 3.

Only one pointed bottom sherd was found, but it probably represents the usual form for these vessels. In addition, two plain sherds seem to be part of a toy pot. Four other fragments appear to be parts of small plain pipe bowls.

Several design techniques were noted in some association, indicating what one ought to suspect anyhow, but which is so frequently overlooked by budding archaeologists soaring straight from the university classroom into professional ceramic typology: a very different impression of decoration and cultural relationships would be gained if we were dealing with restored pottery vessels instead of with tiny fragments.

Carved paddle occurs with plain; cord-wrapped stick with paddle-edge punctates; pseudo-scallop-shell, plain, and cord-wrapped stick with interior scoring; and criss-cross with knotted cord punctates.

STONE: 134 artifacts, including 5 found other than in 1954; 204 cores (2 polyhedral); 6,551 flakes (1 lamellar). Data on perhaps 50 to 100 artifacts collected on the surface are not available to me. Whenever possible, one likes to identify the sources of the stone materials used at a particular site by the Amerinds. In this case, although only a few may be traced at the moment, certain fortunate circumstances permit us to pinpoint the source, in several instances. The materials here are flint, chalcedony, various quartzites, perphyry, hematite, slate (green, black, and red), and granitic.

Some, of course, such as porphyry and other igneous rocks, can be assigned in a general way only to a glacial drift origin. The flints are varied; some, including chalcedony, are probably from nodules weathered out of limestone deposits on Manitoulin; others may have come from quite distant points, such as a mauve variety matching a Parkhill, Ontario source, some 200 miles to the south. But it is in the quartzites that we can achieve unusual success. Although the stone itself is identi- cal with that in the hilltop quarries on the nearby Sheguiandah site, certain conditions, both natural and man-controlled, permit association with particular parts of the hill.

From the moment of Bell's discovery of this site in 1951, we were aware of vast differences in stone-working technologies between it and the Sheguiandah site (Lee 1958, 2). The first clue was seen in that a large biface, obviously from the Sheguiandah site, showed definite signs of an attempt to rework it (Lee 1953, 63). The attempt failed because the specimen was dry and brittle — it had been picked up from the surface by an Amerind, just as we were doing. Subsequent finds showed again and again that brittle quartzite was used at the Point Peninsula camp, as proven by the high frequency (at least 56%) of step flaking, while the remainder of the quartzite artifacts, with two or three exceptions, were crude.

The principal source had already been found. Halfway up the east side of the hill, just under the Nipissing notch, lay a cluster of quartzite boulders, possibly up to four feet in diameter. Conspicuously, large flakes and blocks had been struck from them. Battered surfaces showed where repeated hammer blows had failed to detach flakes. The skilled workers of the Sheguiandah quarries would have scorned such material. The location is marked on a sketch map (Lee 1953, 60) as a “workshop.” Later investigations produced igneous cobbles used as hammers, as well as quantities of rejected “blanks.” Masses of chippings lay around the bases of the boulders.

But not all of the Point Peninsula quartzite specimens were chipped and in brittle condition. Significantly, in a trench producing one or two finely chipped tools, we found two fairly large flakes of quartzite that almost certainly came from Swamp 1 on the hilltop (see map, Lee 1957, 130). Although the peculiar peat stains on the chips could be duplicated in the other swamps on the hill, our excavations showed that only No. 1 permitted easy recovery of chips in shallow water. Our experiments showed further that either chips or blocks, thus obtained, could be flaked with ease, quite unlike the dry material in the boulders at the “workshop.”

It happens on occasion that sources may be traced through some peculiar rind, some portion of which remains on a core, flake or (more rarely) on a finished artifact. At this site, part of the surface of one flake matched the weathered surfaces of
boulders at the hillside "workshop" and probably came from them.

An outstanding feature of the nearby Sheguian­
dah site is the Mystic Ridge (map, Lee 1954, 102). It results from the exposure of the upper edge of a sloping or flanking bed of conglomerate, with quartzite cobbles and occasional boulders weather­ing out of dolomite. The cobbles, prior to incor­poration in the conglomerate, had been severely pounded on the beaches of some Ordovician sea (Dr. John Sanford, personal communication), pro­ducing almost continuous interlocking circles of percussion fractures over every surface. So distinc­tive is this feature that even a tiny fragment of the rind may be identified with certainty. As it hap­pens, too, the same conglomerate bed outcrops downhill on the Nipissing notch, quite near the "workshop." One may be very sure that this is the source of 7 cores and 3 flakes found in the Point Peninsula camp.

Another peculiarity, otherwise found only above the Nipissing notch, was seen on one Hake obtained from the Point Peninsula site. The same phenomenon, observed at the George Lake site near Killarney, Ontario, was termed "water-wear" by the University of Michigan investigators and offered by them as proof of the coexistence of their site with the old beach on which it lay. This explanation was unanimously and vigorously rejected by seven authorities of the Geological Survey of Canada (Lee 1954: 111).

PROJECTILE POINTS: 12 (6 complete, 5 tips, 1 base) (Fig. 5, #1-5 and Fig. 6, #16) — 10 flint, 2 quartzite. Tendency to be "stemmed," with ex­panding base, excurbate blade, no median ridge. Flaking poorly executed, possibly due to the mate­rials used. One small point (Fig. 5, #4), shattered by fire (?) into four flakes, was side-notched. Tips of projectile points, of course, cannot be distin­guished with any certainty from tips of knives. The single base (Fig. 5, 5), however, tended to follow the usual pattern.

KNIVES: 9 (2 complete, 7 bases) — 8 flint, 1 quartzite. These tended to be small and leaf­shaped (Fig. 5, #10, 15, 16, 20, 21 and Fig. 6, #11), relatively narrow. A median ridge occurred on two specimens. Many others, quite similar in shape, were regarded as much too thick or crude to have been used for cutting. Although possibly unfinished knives, they are here included in the biface category.

BIFACES: 46 (9 complete, 19 points, 7 bases, 11 fragments) — 21 flint, 25 quartzite, 1 milky quartz. Bifaces, as defined here, are those artifacts, often called blades, bifacially chipped, regardless of
size, not falling readily into other categories. For whatever reason, more of these were made from quartzite than from flint — a reversal of the situation for specific tools. Most of these specimens were small, rarely reaching 60 mm. in length, but a very few were longer. Nearly all were so crudely chipped or thick as to suggest that they were rejects. One, however, a large point of a biface (Fig. 7, #7), was thin, finely retouched, and well executed in every way, despite being of quartzite. My impression is that it was chipped by Point Peninsula techniques, rather than by those of the Sheguiandah site people.

Three of the quartzite specimens were of greenish opaque material not native to the local area. Shapes varied from narrow-leaf through semi-ovoid to ovoid. No indication of use was recognized.

DRILL: 1 (Fig. 5, #11) — flint. This basal section was not necessarily part of a drill, of course, but its 12 mm. thickness, in relation to its width (20 mm.) strongly suggested it, especially since the sides remained approximately parallel along the 35 mm. section, recovered.

SCRAPERS: 40 (22 end, 1 end on lamellar flake, 9 thumbnail, 2 side, 4 flake, 2 no data) — 30 flint, 10 quartzite. Almost all of the end scrapers, as well as the thumbnail variety, were very small (Figs. 8 and 9). The thumbnail type and all but two of the end scrapers were made from flint. The lamellar flake has some significance, in view of the occurrence of a core with lamellar flake scars. Side scrapers, on the other hand, were larger, ranging up to 4" long (Fig. 10, #5). All side and flake scrapers were made from quartzite.

USED FLAKES: 11 (7 flint, 4 quartzite). These seem to have been used in some scraping action, probably on wood. Some, especially the quartzite specimens, were large, up to three inches long (Fig. 7, #5). One small specimen was of the "spokeshave" variety (Fig. 9, #14).

HAMMERS: 5 (2 igneous, 3 black hematite). Only the hematite hammers were unusual (Lee 1962, 113). No other site in Ontario, within my experience, has yielded them. The advantages of hematite are obvious: concentrated weight and a relatively soft surface into which the edge of a specimen being chipped would bite. Although only three complete hammers of hematite were found (Fig. 9, #12, 17, 20), 84 chips and chunky fragments indicated that several others were used until broken into fragments too small for further use.

The complete specimens, together with an unusual hematite object (see amulets, below), were found in one trench. Chips also occurred there and in immediately adjacent squares, but were totally
A POINT PENINSULA SITE, MANITOULIN ISLAND, LAKE HURON

Fig. 9. TOOLS AND STONE MATERIALS. 1-11, 14, 15, 19, Flint Scrapers; 12, 17, 20, Hematite Hammerstones; 13, Opaque quartzite; 16, Milky quartz; 18, Rubbed hematite.

absent from more distant areas examined. The hammers were: a) 71 x 28 x 19 mm., tapering toward each end, battered, especially at one end from which chips had been detached; b) 31 x 19 x 13 mm., rounded toward the battered ends, as seen from the broad side, but plano-convex from the narrow side — evidently the remaining usable portion of a hammer that had split lengthwise.

AMULETS: 2 (1 black slate, 1 hematite). For the slate specimen, I must rely only on memory: It was about 4" long by about 2" wide, perhaps ½" thick, with asymmetric sides, one edge being quite sharp, no hole. The hematite object (Fig. 9, #18), in all probability, was the central portion of a hammer that had split lengthwise. Rubbed and rounded almost to an oval shape from the broad view, its dimensions are 45 x 22 x 7 mm.

ABRADERS: 2 (sandstone). These showed wear such as results from polished an axe blade.

AXE: 1 (greenish opaque quartzite). The only specimen came from a pile of field stones. Accurate data are not available to me, but it was broken, probably nearer the blade end, with the poll section missing.

GROOVED MAUL: 1 (igneous). Also recovered from the pile of field stones. From memory, it was about 6 x 3", encircled near the mid-point by a broad and shallow groove.

NET SINKER: 1 (schist). A flat beach pebble, end-notched.

CORES: 204, including 3 not found in 1954: (165 flint, 31 quartzite, 2 greenish opaque quartzite, 3 igneous, 3 red slate). In this assemblage, the quartzite was most valuable in yielding information. Several of the cores could be traced to their exact point of origin on the nearby hill of the Sheguiandah site. Significantly, just as in the case of the implements themselves, considerable step-flaking was observed, indicating that these cores were from surface material, not from a quarry. One quartzite object (Fig. 10, 1) strongly resembled a uniface, but it is my opinion that it was merely a core. Of the flint specimens, two are of special interest, having yielded flakes from every side. One shows several lamellar flake scars (Fig. 5, #7).

FLAKES: 6,635, including 84 fragments of hematite hammers (4,076 flint, 2,436 quartzite, 6 greenish opaque quartzite, 1 igneous, 1 quartz, 6 slate, 25 porphyry). The significance of the evidence of the chips, of course, lies in their clear demonstration that a Point Peninsula group, living close to the ancient and enormous quartzite quarries said by authorities to be their own, much preferred flint, even when it was available only in very small nodules and had to be brought, in many cases, from distant places. The cores illustrate this point even more strongly. The importance of this evidence was grasped immediately by Dr. E. S. Carpenter of the University of Toronto, when he visited my camp with Mr. Frank Ridley in September, 1954, and saw the open trenches at both sites.

Fig. 10. QUARTZITE ARTIFACTS, step flaking present. 1, 4, Cores; 3, Worked Flake; 5, Side Scraper.
RELATIONSIPHS AND SPECULATIONS

For reasons set forth in other reports (Lee 1960b, 45 and 1962, 44), together with due consideration of the implications of Dr. Carpenter's sharp criticism (1953) of a major work by R. S. MacNeish, I believe that statistical analyses of implements and pottery from this site would introduce more problems than they might solve, in addition to providing a comforting but false and entirely misleading conclusion.

In the apparent absence of stratigraphy, I think it is preferable to seek whatever clues there may be in the presence (but not necessarily absence) of certain traits and resemblances. Again, in the present and quite inadequate state of knowledge concerning the Point Peninsula culture, with its spread over vast territories and its obvious regional differences, I think it far better to raise questions rather than jam the evidence into a hastily and boyishly conceived and ill-considered schematic chronology based on seriation.

As indicated earlier, this is a Point Peninsula site. Even the experts of the Northeast, in their eagerness to eliminate the embarrassing evidence of Sheguiandah, acknowledged that. A brief outline of certain salient pottery features of this culture, as defined or described for New York State, may be helpful in understanding the peculiarities of the site under consideration.

Turning to Ritchie and MacNeish (1949, 119), we learn that "the chief observable trends [of Point Peninsula] comprise a continuation throughout the entire temporal span of Hopewellian-like decorative techniques, i.e., rocker-stamping, dentate, and complex dentate, and an associated non-Hopewellian corded decorative feature." They inform us further (p. 100) that the series is characterized by rectangular dentate-stamp or corded-stick. Bases are conoidal. Lips are nearly pointed or rounded and slightly everted. Interiors are commonly channeled, a feature showing steady decline. Exteriors are smooth in the earlier stages, but often corded in the later.

But several features on our site come into sharper focus when we examine the characteristics of their Middle Point Peninsula. We note an incised criss-cross, pointed deep punctates with interior nodes, cording in combinations of vertical and horizontal impressions, pseudo-scallop-shell, and plain surface — all present at our site of the "quarrymen" at Sheguiandah Bay.

There are some puzzling aspects of certain characteristics, of course. Pseudo-scallop-shell, although well represented, was far from typical [at our site], generally speaking. The zig-zag form, as seen on the Lucas site, Inverhuron (Lee 1958 — Plate 3, #19) did occur here, but far more frequently, a form more appropriately termed “wavy paddle edge” appeared. Again, Vinette Dentate, although reported with the discovery of our site, did not turn up in the later diggings, only a few rods away from the spot where it was found. A toothed, comb-like marker was evidently in use, but impressions were made at such an angle that a true dentate stamp did not result. Yet, according to Ritchie and MacNeish, this form reached its greatest popularity in the late Middle period.

There are other variations from the supposed and suggested trends of New York State. Complex Dentate was not recognized at all in our collections. Rounded or pointed lips were well represented, except for the very sharp variety, but a greater number were flat or beveled (36 rounded, 4 sharp or pointed, 10 flat, 40 beveled out, and 3 beveled in). Most striking of all, rocker-stamping seems to be strangely absent, where, if the published trends are correct, there ought to be lots of it. Conceivably, as happened at the Lucas site on the eastern shore of Lake Huron, this circumstance could result from the chance selection of trenching positions, but it is not here considered probable, in view of the several pits and trenches dug at various points across the site.

If we think about this as a Late Point Peninsula manifestation or a transitional phase, we are at once faced with the question, "Where are the true incipient collars?" — in addition to the challenge of the missing rocker-stamp.

It is unfortunate that, in relating cultures from archaeological evidence, we are still forced to lean so heavily upon ceramics, when we should like to consider culture as a whole. Typically, the stone artifacts from this site are not very helpful. Some of the knives or bifaces do resemble Point Peninsula forms. End scrapers, too, are rather numerous.

However, the projectile points are of particular interest. Of the five specimens sufficiently complete or available for meaningful comparisons, two are identical with the Inverhuron points illustrated by Kenyon (1959, 39, #5, 6, 7), even in such details as length, width, excurvate blade, expanding “stem,” and chipping technique. The basal section of another matches perfectly with the bases of several points in the same illustration. Kenyon has hastily published these as Archaic — a statement that I
have called in question in an exposé (Lee 1962, 30).

The single net sinker deserves mention as a cultural identifier. This too has a Point Peninsula association at Inverhuron (Lee 1960b, 35, 37, 43-4, 47). Its peculiarity lies in the end-notchling, a relatively unusual feature in Ontario.

As for direct relationships, particularly in its ceramics, this site most nearly resembles the Point Peninsula stratum of the famed Frank Bay site (Ridley 1954), which has been assigned to Point Peninsula 2 and 3 stages. Frank Bay, on modern Lake Nipissing, lies 90 miles to the east. However, rocker-stamping, seemingly absent at our site, is very much in evidence at Frank Bay. Presumably, some significant time difference and cultural changes are involved. Our site ought to be later. On the other hand, one must remember that this is a very long way from the center of the universe. The apparent absence of true incipient collars at our site would seem to place the culture earlier than certain material excavated by us on Treasure Island in Lake Mindemoya, Manitoulin.

Culture, of course, developed neither at a uniform rate nor uniformly over vast areas. The picayunish quibbling over temper, size, paste, and hardness of pottery — the latter quite alterable in Nature, as I have demonstrated in the Lucas site report, 1960b — so popular in academic circles, is contingent upon the unwarranted assumption that the center of the universe coincides precisely with the very point at which the initial discovery of the culture in question was made; that, in some mysterious way, all member villages of that culture conformed in almost every respect, no matter how many hundreds or thousands of miles distant. The concept is unrealistic, misleading, completely false — and very popular. Whatever the situation may be in New York State today, there was in Point Peninsula times no central authority to decree at will the size of temper-screen to be used by each potter across a thousand miles of Ontario, nor were micrometers then in vogue. It is one thing to say that differences exist, but quite another to start hauling populations across the northland, whether east or west, in response to a desire to promote a theory too hastily put forth in a publication, hence unalterable.

Definite age determinations of this site must come in some other way. Unfortunately, the geological features at this site, which might otherwise have assisted us, are either too early or are not well determined.

The site does postdate The Algoma beach on which it lies, with very minor qualifying considerations. This lake level was radiocarbon dated (sample C-608) at 2,619 years ago (Libby 1952, 674). Although apparently accepted by Flint (1953, 897) as a Great Lakes Nipissing feature, Hough (1953, 91) showed clearly that it is the later Algoma stage. How reliable the radiocarbon date may be, of course, is quite another question.

But how much later than Algoma is this site? It lies on still lower beaches, at least down to about 9 feet above the level of Lake Huron. This may one day provide an answer. Until then, our search should be concentrated upon stratigraphic occurrences such as were revealed by Ridley (1954) at Frank Bay.

Ottawa, Ontario
June 24, 1963

REFERENCES

Carpenter, Edmund S.

Flint, R. F.

Hough, Jack L.

Kenyon, Walter

Lee, Thomas E.
The study of ceramics as related to prehistoric pottery making in New England furnishes many interesting examples of human ingenuity. Results of logical deduction seem to justify postulation of female domination of the industry, which extended over some 1,300 years, from about A.D. 300. In this area of the Northeast, gradual development of the shape of ceramic pots from stone bowls is not indicated from pottery recoveries of the earliest times. Instead, a sharp transition is evident in which conoidal pointed based pots abruptly replace flat bottomed stone bowls with lugs, between which from all outward appearances there seems to be no relation. However, this does not necessarily refute the possibility of culture continuity, which is manifest by the continuation from the Stone Bowl (Late Archaic) to the Ceramic period of many stone implement traits. As has been repeatedly presented in former reports by the writer, New England Stone Bowl women must have been the last to receive information of how to make clay pots in the long transfusion of knowledge across the country, presumably originating in Asia. By the time they were informed, probably by canoe-transported visitors from Long Island, they probably were advised not to experiment with flat bottomed clay pots. Quite likely they were told that such pots had been proven unfit due to prevalent fire cracking, as a result of uneven distribution of heat; sherds of broken flat bottomed clay pots, some with lugs, appear on the earliest pottery levels in Pennsylvania, New Jersey, and Long Island, followed in the next higher level by conoidal-shaped pots with Stage 1 traits.

Here in New England, however, Stage 1 conoidal pots are at the lowest ceramic level. From earliest times, it appears that one of the potters' chief problems in constructing these pointed based pots was how to make their many coils of clay hold together. For hundreds of years during Stage 1 pottery times, potters could devise no better way than that which they had been taught by their Long Island neighbors. This was to cord-mark the pot's walls, inside and out, with a cord-wrapped paddle of some kind. Possibly, this was performed by paddling from the outside against a cord-wrapped block held inside, to prevent the walls from caving in. This would account for the cord-markings, sometimes quite deep, which cover the pot's concave inner, as well as outer walls. But this paddling technique only partly solved the problem, as is amply evident from recovered Stage 1 sherds; they frequently exhibit separation along the coiling.

During the years of pottery making, New England's geographic location seems to have placed potters in a position in which they must have found themselves the recipients of ideas, which kept creeping in from western culture centers, following the eastward course of ceramic diffusion. These, no doubt, tended to restrict creative effort to some extent. However, sufficient evidence is now available to show that local potters used their inventive ability in altering old methods and designs, and even in creating new ones of their own. In the case of tooling techniques, it seems probable that most, if not all of them, found their way into New England from outside areas of influence. This paper is not so much concerned in proving the extent of local ceramic inventive initiative, as it is in pointing out the apparent effort of potters to accomplish better results, no matter where the ideas originated.
From a Duxbury shell deposit site, on two separate occasions, recovery was made, recently, of quantities of sherds, representing two nearly complete pots. Each came from a different pit, and their recovery has provided an opportunity to learn something more about what went on at the close of Stage 1 ceramics. Final restoration of both pots was accomplished by the writer (Fig. 11), and as a result, close observation was made possible of all particulars concerning construction details. For the purpose of comparison, it seems best at this point to enumerate the most important traits of each, in order that the conclusion may be more readily understood.

Exhibit #1 is a Stage 2 pot without design embellishment. Conoidal in shape, the contour of its base slopes quite sharply to a blunted point. Its paste has vegetable temper with an admixture of a small amount of shell its walls are irregularly thick. An uneven plain flat rim surmounts a straight neck. The pot's outside is cord-marked from top to bottom, the markings being applied at different angles. Inside, indications are that the surface was first finger-wiped, then superficially stick-wiped with the frayed end of a stick about \(\frac{3}{4} \) in diameter. It was drawn in different directions, apparently at random with no fixed pattern. Indications are that the cord-wrapped paddle, which marked the outside, was also used to help flatten the rim with the wound cord kept in a uniform position to produce oblique cord-marking. In the pot's construction, evidence shows that a pointed clay cup was first pressed out by finger manipulation to form the conoidal base. Next, a band of clay about \(2\frac{1}{4} \) wide was pinched onto the cup's edges. After this, narrower coils of less than an inch were repeatedly pinched onto the expanding walls. The final construction of some 3 or 4" up to the rim seems to have been made with a solid band of clay, as sherds from this area, unlike all other body sherds, showed no cleavage along coiling, presumably indicating absence of coils.

Exhibit #2 is a Stage 2 pot, also, and is without design embellishment. Its conoidal shape with sharply sloping basal contour almost duplicates that of exhibit #1, only somewhat reduced in size. Its paste has shell temper, and its walls measure \(\frac{1}{4} \) or more in thickness. A plain flat rim, uneven in its formation, surmounts a straight neck like the first pot. A Cord-marked exterior is similar, except it retains a more uniform oblique alignment, and is less pronounced. Another similar detail is a rim flattened by tamping with the cord-wrapped paddle. In one respect this pot differs from the first in that its interior is solely finger-wiped; no stick-wiping is in evidence. In general, its construction seems to resemble that of pot #1 with a pointed cup to start with, followed by coiling, which in this case, extends most, if not all the way to the rim. If anything, construction of pot #2 seems to suggest less skill in holding to a uniform structural development.

In discussing this evidence, several facts are self evident; both pots have virtually the same shape, similar external cord-marking, the same cord-
tamped flattened rim, shell or an admixture of it in the temper, coiling used in the construction, and a finger-wiped interior. However, there is one difference, which should be emphasized: pot #1 has superficial stick-wiping with an unpronged stick over a finger-wiped interior, whereas pot #2 has only the latter.

During restoration of pot #1 a unique condition was witnessed. Excluding about 3" of neck and about the same at the base, all body sherds showed separation along lines of coiling. That is, instead of jagged edges wherever a break had occurred, invariably, at least one edge revealed a more or less smooth convex or concave cleavage, where it had separated along a coil's edge. Sometimes, a sherd, no more than ½ - 3" wide would be delineated by two opposite edges, one concave, the other convex, designating the limits of a flattened coil. Now, while some sherds from pot #2 showed cleavage along the coiling, there were not as many as in the case of pot #1, which may only mean that its potter had better luck or more skill in its construction.

CONCLUSION

These 2 pots from different pits at one site, both having such similar traits, might be construed either as indicating a particular period of the site's occupancy, or as work of the same potter. In either case, these pots exhibit a simple form of conoidal construction with cord-marked exteriors, which are basic to Stage 1 ware. However, where they differ is in their finger and stick-wiped interiors, flat rims, and shell temper, all of which are Stage 2 traits. Their lack of design embellishment, an important part of early Stage 2 ware, suggests their chronological position to be at the beginning of this second ceramic period. Unquestionably, by this time a desire to make improvements, inherent in most human endeavor, impelled potters to experiment with one new method of procedure after another. All through the hundreds of years of Stage 1 production potters were relatively inexperienced, and must have felt inclined to adhere closely to techniques as prescribed by their original instructors. After these many long years had passed, however, certain weaknesses in pottery construction must have become apparent, one of which was the failure of coils to hold together sufficiently well to prevent breakage of ware along their seams. Consequently, potters were faced with the problem of how to overcome this proven deficiency, and sooner or later new methods of treating the clay paste before firing were bound to occur.

As shown by the Duxbury pots, one idea seems to have been that of finger-wiping instead of cord-marking the pot's interior. However, it is evident from pot #2 that this new treatment was not entirely satisfactory, and other ways must have been sought. At this time, whether the idea diffused into this area from western culture centers, or originated here, the important thing to observe is the start of a new surfacing technique, referred to as stick-wiping. It is presumed to have been employed for the purpose of joining together more firmly the pot's coils; it certainly could not have been used, hidden as it was on the inner walls of a pot, for the purpose of adornment. A study has been made of the effects of this interior surface treatment in holding coils together, as displayed by several pots restored by the writer, with the following results. When a stick is used with three or more moderate prongs cut in its end, the best results seem to ensue. However, indiscriminate wiping with this stick is less effective than uniform oblique wiping, in which the prongs cut across the horizontally laid coils. When such a pronged stick is used in this way on moist enough clay to insure discernible cuts across coils, the best results seem to follow. However, should an ordinary stick be employed with just a frayed broken end, as used for pot #1, incisions are so weak and superficial as to be of no help in locking the coils together; witness, all body sherds of pot #1 showed cleavage along the coiling.

Failure of the maker of this pot to use the pronged and more pronounced uniform stick-wiping technique tends to indicate inexperience. Therefore, it may suggest an early phase of Stage 2 for the pot, as already postulated from other diagnostic traits. Furthermore, the fact that this pot first had its interior finger-wiped, may tend to show that finger-wiping came first. Consequently, pot #2, with its finger-wiped interior may represent a slightly earlier date soon after the close of Stage 1 ceramics, although for some unknown reason its coils held together better than those of pot #1.

This paper has attempted to present evidence, which seems to the writer informative of an apparent effort on the part of potters to improve the quality of their ware. Contemplation of it seems to support the self-evident fact that skillful workmanship evolves from an uncertain beginning of trial and error, which has characterized man's endeavor throughout all past ages.

Attleboro, Mass.
February 1963