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Pythagorean Triples Challenge 
by Tom Moore1 | edited by Jennifer Silva 

 

If you know a lot about Pythagorean triples, feel free to skip right to the 5 challenge problems at 

the end of this article.  Otherwise, here is some background information. 

 

A Pythagorean triple (a, b, c) is a triple of positive integers that can be used to form the sides of 

a right triangle with legs of lengths a and b and hypotenuse of length c.  According to the 

Pythagorean theorem, c2 = a2 + b2.  Conversely, if a, b, and c are positive integers that satisfy the 

Pythagorean equation c2 = a2 + b2, then a, b, and c can be used as the lengths of the sides of a 

right triangle. 

 

A Pythagorean triple (a, b, c) is called primitive if a and b share no common factor other than 1.  

For example, (3, 4, 5), (5, 12, 13), (8, 15, 17), and (7, 24, 25) are all primitive Pythagorean 

triples, but (6, 8, 10) is not primitive, even though it is a Pythagorean triple. 

 

A Little History 
 

From the ancient Greek manuscript Elements, which was 

written by Euclid over 2,000 years ago, we learn both the 

statement and proof of Pythagoras’s theorem.  In Book I of 

the Elements, we find Proposition 47: In right-angled 

triangles the square on the side opposite the right angle 

equals the sum of the squares on the sides containing the 

right angle.2  That is, the area of the red square is equal to 

the combined areas of the green and blue squares in the 

figure at right. 

  

In Book X, Proposition 29, Lemma 13, we learn how to 

generate all primitive Pythagorean triples.  Euclid’s 

statement is geometric, but we can put it algebraically, like 

this: if m > n are positive integers of opposite parity and their highest common factor is 1, then 

(2mn, m2 – n2, m2 + n2) is a primitive Pythagorean triple.  Furthermore, all primitive Pythagorean 

triples may be obtained in this manner (switching the leg lengths if necessary so that the even 

one comes first). 

 

Since every Pythagorean triple can be obtained by scaling a primitive Pythagorean triple by an 

integer scale factor, the problem of finding all Pythagorean triples is reduced to that of finding all 

primitive Pythagorean triples.  So Euclid’s proposition 29 solves the problem of finding 

Pythagorean triples. 

                                                 
1 Thomas Moore is professor emeritus at Bridgewater State University. 
2 See aleph0.clarku.edu/~djoyce/java/elements/bookI/propI47.html. 
3 See aleph0.clarku.edu/~djoyce/java/elements/bookX/propX29.html. 

Suppose (a, b, c) is a primitive Pythagorean triple.  Show that a and b have opposite parity. 

http://aleph0.clarku.edu/~djoyce/java/elements/bookI/propI47.html
http://aleph0.clarku.edu/~djoyce/java/elements/bookX/propX29.html
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The first few primitive Pythagorean triples derived using Euclid’s Proposition 29 are: 

 

m n 2mn m2 – n2 m2 + n2 

2 1 4 3 5 

3 2 12 5 13 

4 1 8 15 17 

4 3 24 7 25 

5 2 20 21 29 

5 4 40 9 41 

6 1 12 35 37 

6 5 60 11 61 

 

During the years 800 through 200 BCE, books emerged in India that are now grouped under the 

name Sulbasutras.  The following primitive Pythagorean triples appear in the Sulbasutras: 

 

(3, 4, 5),   (5, 12, 13),   (8, 15, 17),   (7, 24, 25),   (12, 35, 37). 

 

There are geometric constructions in the Sulbasutras that lead to algebraic formulas that can be 

used to produce Pythagorean triples.  For example, in one construction of a square with a given 

area t, the algebraic identity4 
2 2

1 1

2 2

t t
t

    
    
   

 

 

can be inferred.  If we substitute t = (2x + 1)2 into this identity, we get the identity 

 

(2x + 1)2 = (2x2 + 2x + 1)2 – (2x2 + 2x)2. 

 

This identity yields the Pythagorean triples (2x2 + 2x, 2x + 1, 2x2 + 2x + 1), where x is a positive 

integer.  Similarly, substituting t = x2 into the identity yields Pythagorean triples of the form 

(2x, x2 – 1, x2 + 1), where x is any integer greater than 1.  Here’s a table of some of the 

Pythagorean triples produced by these formulas: 

 

x (2x2 + 2x, 2x + 1, 2x2 + 2x + 1) 

 

x (2x, x2 – 1, x2 + 1) 

1 (4, 3, 5) 2 (4, 3, 5) 

2 (12, 5, 13) 3 (6, 8, 10) 

3 (24, 7, 25) 4 (8, 15, 17) 

4 (40, 9, 41) 5 (10, 24, 26) 

5 (60, 11, 61) 6 (12, 35, 37) 

 

In ancient Babylon, archeologists unearthed thousands of clay tablets with writing on them from 

a system called cuneiform.  One of these tablets, known as Plimpton 322, lists some 

Pythagorean triples, although it is not known whether the Babylonians interpreted these numbers 

as the sides of a right triangle.  The cuneiform system used a base 60 number system.  To learn 

more about this and try your hand at deciphering the contents of Plimpton 322, look up Plimpton 

322 on the internet. 

                                                 
4 See www.math.tifr.res.in/~dani/pyth.pdf  

http://www.math.tifr.res.in/~dani/pyth.pdf
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Pythagorean Triples Challenges 

 

I have gathered a few problems that I have published over the years 

related to this topic.  You are hereby challenged to try and solve some 

of them!  The last one is a new problem created especially for Girls’ 

Angle. 

 

We welcome you to submit your solutions!  Send them to girlsangle@gmail.com. 

 

1. From the Pi Mu Epsilon Journal, 1993 (used with permission from Steve Miller): 

 

For a < b < c positive integers, if gcd(a, b) = 1 and a2 + b2 = c2, then we say (a, b, c) is a 

primitive Pythagorean.  If both a and c are primes, we call it a prime primitive Pythagorean 

triple.  (i) If (a, b, c) is a prime primitive Pythagorean triple, deduce that b = c – 1.  (ii) Find all 

prime primitive Pythagorean triples in which a) a and c are twin primes; b) both are Mersenne 

primes; c) both are Fermat primes; d) one is Mersenne and the other Fermat. 

 

2. From The Pentagon, 2012 (used with permission from Pat Costello): 

 

Prove that there are infinitely many primitive Pythagorean triples (a, b, c), such as (5, 12, 13), 

with hypotenuse c such that the odd leg is a pentagonal number and the even leg is consecutive 

with the hypotenuse. 

 

3. Submitted to The Pentagon, 2013 (used with permission from Pat Costello): 

 

Prove that there are infinitely many Pythagorean triples (a, b, c) with “legs” a and b, one of 

which is an abundant number and the other a deficient number. 

 

4. From MathProblems Journal, 2013 (used with permission from MathProblems): 

 

The examples (3, 4, 5), (5, 12, 13), and (13, 84, 85) show that the same odd number may occur as 

the “hypotenuse” and as the “odd leg” of primitive Pythagorean triples.  Provide explicit 

constructions of such triples to show that there are infinitely many such odd numbers. 

 

5. For the Girls’ Angle Bulletin: 

 

Let (a, b, c) be a Pythagorean triple.  (i) Prove that the highest power of 2 dividing a cannot 

equal the highest power of 2 dividing b.  (ii) Prove the same for the highest power of 3 dividing 

a. 

 

For More 

 

See www.hps.cam.ac.uk/people/robson/neither-sherlock.pdf for more on Plimpton 322. 

 

For a proof of the Pythagorean theorem, check out the Girls’ Angle WIM Video featuring Ina 

Petkova.  Also, check out the Visual Proof of the Pythagorean Theorem on the Girls’ Angle 

YouTube channel. 

Girls’ Angle thanks 

Professor Moore 

for problem #5! 

http://www.hps.cam.ac.uk/people/robson/neither-sherlock.pdf
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