
Bridgewater State University Bridgewater State University

Virtual Commons - Bridgewater State University Virtual Commons - Bridgewater State University

Computer Science Faculty Publications Computer Science Department

2016

Export to Arduino: A Tool to Teach Processor Design on Real Export to Arduino: A Tool to Teach Processor Design on Real

Hardware Hardware

Michael Black
Bridgewater State University, michael.black@bridgew.edu

Follow this and additional works at: https://vc.bridgew.edu/compsci_fac

 Part of the Computer Sciences Commons, Curriculum and Instruction Commons, and the Science and

Mathematics Education Commons

Virtual Commons Citation Virtual Commons Citation
Black, Michael (2016). Export to Arduino: A Tool to Teach Processor Design on Real Hardware. In
Computer Science Faculty Publications. Paper 12.
Available at: https://vc.bridgew.edu/compsci_fac/12

This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State
University, Bridgewater, Massachusetts.

http://vc.bridgew.edu/
http://vc.bridgew.edu/
https://vc.bridgew.edu/
https://vc.bridgew.edu/compsci_fac
https://vc.bridgew.edu/compsci
https://vc.bridgew.edu/compsci_fac?utm_source=vc.bridgew.edu%2Fcompsci_fac%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=vc.bridgew.edu%2Fcompsci_fac%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/786?utm_source=vc.bridgew.edu%2Fcompsci_fac%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/800?utm_source=vc.bridgew.edu%2Fcompsci_fac%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/800?utm_source=vc.bridgew.edu%2Fcompsci_fac%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages

“EXPORT TO ARDUINO”: A TOOL TO TEACH PROCESSOR

DESIGN ON REAL HARDWARE *

Michael Black

Department of Computer Science

Bridgewater State University

michael.black@bridgew.edu

ABSTRACT

Many computer organization courses teach digital design and processor

architecture without a hardware lab or physical equipment. This paper

introduces a module to allow students to export digital designs as C programs

that run on an inexpensive Arduino Uno, thereby allowing students to test and

observe their designs in actual hardware with minimal setup time and

equipment. The module runs within Emumaker86, an open-source digital

design tool previously developed by the author for teaching microprocessor

architecture, and can handle designs ranging from simple combinational

circuits to a complete processor. Students were given this module in an

undergraduate “Systems Computing” course, and developed a traffic light

controller, a postfix evaluator, and a processor of their own design.

INTRODUCTION

A single course in “Computer Organization”, as taught in many liberal arts computer

science programs and recommended in the ACM core curriculum [1], is typically a

major's sole exposure to computer hardware. This course must consequently cover a wide

range of material, including digital design, assembly language, and processor

microarchitecture. One of the challenges in teaching computer hardware is exposing

students to physical hardware: chips, wires, lights, switches. Ideally students would gain

a tangible appreciation for digital circuits by actually building them, but this requires

equipment, expertise, lab time, and setup / takedown time. Another challenge is the sheer

breadth and complexity of the material makes it difficult to assign design projects. In a

 Copyright © 2016 by the Consortium for Computing Sciences in Colleges. Permission to copy*

without fee all or part of this material is granted provided that the copies are not made or

distributed for direct commercial advantage, the CCSC copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the

Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires

a fee and/or specific permission.

21

JCSC 31, 6 (June 2016)

course on processor design it would be nice for students to design a processor, preferably

out of NAND gates, but the scale of that project and limited time makes this impractical.

Inexpensive, widely used microcontroller boards, the Arduino in particular, offer a

solution to the hardware challenge. A single Arduino Uno board, containing a C

programmable Atmel microcontroller, USB serial interface, and breakout pins, can be

purchased from Amazon for between $5 and $20. For approximately $60, less than a

typical textbook, Arduino “starter kits” are sold that include a breadboard, wires,

switches, and LEDs. Several digital design software tools have been developed for

teaching computer hardware [4]. These range from circuit simulators at the lowest level

to CPU emulators intended for learning assembly programming. Recently, a few tools

have been developed to bridge the gap and teach processor microarchitecture design [7].

These include Emumaker86 [2,3], a digital simulator developed by the author that

specifically teaches undergraduates to design processors. Emumaker86's processor design

engine has two components: a datapath tool for placing registers, muxes, buses, and logic

gates, and a control tool for scripting the control unit's state machine. Up until now,

Emumaker86, like many other educational digital simulators, can only model the

hardware behavior virtually on the user's computer screen. The product of the research

described in this paper is a tool that takes a simulated Emumaker86 processor circuit and

compiles it to an identical C program that runs on an Arduino board. A student, after

composing and simulating a circuit, calls this “Export” tool, uploads its output to an

Arduino board, connects LEDs and switches to the appropriate Arduino pins, and can

physically see and test the design. Additionally, the student can now use this

reprogrammed Arduino to integrate the student's design into a larger circuit.

A model for this work is programmable logic chips, such as FPGAs, that are

programmed using a hardware descriptor language such as Verilog [6]. The disadvantage

of these compared with Arduinos is cost and learning curve, both in installing and using

the software and learning a new language. Here, in contrast, students draw their circuits

graphically, and the Export tool autogenerates the C code, which the students are not

required to understand. The author designed this Export tool to instruct a “Systems

Computing” course with 16 students. Three multiweek design projects were created for

this course and assigned to students in teams of two. These projects were: 1) a traffic

light controller, 2) a stack-based postfix expression evaluator, 3) a complete 8-bit

processor of the student's own design; and are explained in greater detail in this paper.

The Export tool was developed concurrently with the course, and student experience and

feedback was used in its development.

The Emumaker86 simulator with the Export tool integrated is posted at

https://github.com/mdblack/simulator.html and are freely distributed under the GPL

license.

THE EXPORT TOOL

The Export Tool, while written initially as a standalone application, is packaged as

a module within Emumaker86 and called with a button-press within that program. It

generates an Arduino .ino project file, which the student then loads into the Arduino

utility and flashes to the board.

22

CCSC: Northeastern Conference

Emumaker86 designs are drawn in a graphical interface and saved in a custom XML

format. Each component has a type, an identifier, a bit-width, and an X-Y coordinate for

display. Buses include, additionally, a sink, provided the bus's output connects to a

non-bus. This format, which was intended solely for reproducing the circuit visually, is

used as input to the Export tool. The output is a C program, in the Arduino dialect,

where each component is modeled in code. An Arduino program has two basic functions:

setup() which runs once, and loop() which runs repeatedly as fast as possible. The Export

tool generates this Arduino code as follows:

1. A global array int table[] is made to store the current value of each component in the

circuit.

2. In setup(), Arduino pins are mapped to input and output pins in the circuit. Comments

are provided in the code for the student that tell which Arduino pins map to which I/O

pins.

3. In loop(), each combinational component is translated to a single line of C code.

Figure 1 shows how a D flip-flop consisting of basic logic gates is converted into the

equivalent C statements. Also supported are adders, negators, comparators, bus splitters

and joiners, and lookup tables (ROMs). The contents of lookup tables are stored as global

arrays.

4. In a final post-processing stage, all units are renumbered so that the table[] is as small

as possible.

The C program models the circuit by iteratively converging on the correct result.

Initially only the input pins have a correct value. The second time loop() runs,

components sourced by the input pins produce a correct value, the third time components

two away from the inputs are corrected, and so on. As the Arduino Uno has a clock rate

of 16MHz, this appears instantaneous to the user. Sequential units — registers

(edge-triggered D flip flops) and register files (tables of registers that can be indexed) —

are handled as a special case. All registers are synchronized to a global clock pin assigned

to Arduino pin 2. A second global registerInput[] holds incoming values. When the

Figure 1: Example Emumaker86 circuit and the autogenerated C code

23

JCSC 31, 6 (June 2016)

clock pin changes from low to high, all registerInputs are copied to their appropriate table

entries. An optional disable input to the register will prevent it from being clocked.

In the initial development, buses were also translated as simple assignment

statements, such as table[2]=table[1]; This resulted, however, in massive programs that

would not fit on an Arduino Uno, as many students would draw far more buses than they

needed. An additional translation stage was consequently added. Each bus is traced back

to the component sourcing it, that component is directly connected to the bus's output, and

the bus is removed from the C program. This tended to reduce the program size by

60-70%.

THE COURSE

The author tested the tool on an elective course while it was being developed.

“Systems Computing” was a one-off special topics course open to any student who had

completed the basic programming requirements. 16 students took the class. Of these

students, 8 reported in an anonymous survey having learned assembly language previously

and 4 said that they had circuit wiring experience. For materials, students were required

to purchase an Arduino Uno and encouraged to buy a “starter kit” with breadboard, wires,

and LEDs. For students who did not get the starter kit, some breadboards and parts were

made available.

PROJECTS

The author developed three projects for this course: a traffic light controller, a

postfix evaluator, and a simple processor. The first project, assigned approximately

three weeks into the semester, had students design a state machine for a T-junction traffic

intersection between a busy road and a smaller road. The outputs of the circuit are six

LEDs: red, yellow, and green for each direction; the input represents whether a car is

present on the smaller road. A state diagram is provided to the students, but they must

produce the equations, simplify them, and construct the circuit entirely out of basic gates

and registers. Figure 2 shows, partially, a student Emumaker86 circuit and the student's

Arduino circuit. The project was successfully completed by all 16 students.

24

CCSC: Northeastern Conference

The second project required students

to build a 4-bit stack-based evaluator with a small 3-bit instruction set inspired by Java

byte code:

000,001,010 iconst_0, iconst_1, iconst_5: push 0, 1, 5 to the stack
011,100 add, sub: pop two values, add or subtract, push the result
101 swap: pop two values and push them back in reverse

110 pop: pop a value and display it to an output pin

Unlike a true processor, there is no instruction storage or branch instructions. The input

to the circuit are 3 push buttons for the instruction and a single “Clock” button, the output

is the 4 LED result. However, like real processors, some instructions (add, sub, swap)

took 4 cycles; the student must press Clock four times to see the result. Students

demonstrated their work by running the test program:

1 1 + 5 SWAP - POP

If the lights show 0011 (3), the student was given full credit. For this assignment students

were given detailed instructions: they started by building a stack with push, pop, and

no-action operations, and then constructing an adder and swap mechanism around their

stack. Unlike the first project, they were encouraged to use multiplexors instead of gates

and program lookup tables to control them.

Figure 3 shows part of a student's design

and the resulting board. The project was

successfully completed by 2/3 of the

students.

For the third project, students built an

8-bit processor to implement a simple

instruction set. A small example

instruction set was given to the students,

but for full credit they had to design and

Figure 2: Traffic Light

Figure 3: Postfix Evaluator

25

JCSC 31, 6 (June 2016)

encode their own. The instruction set had

to be capable of running a small test program

that would iteratively sum numbers 1+2+...5,

output the result, and then halt in an infinite

while loop. Students implemented the

processor using the same components as in the

second project, and used a lookup table as an

instruction ROM. They then programmed this

instruction ROM with their machine code and

uploaded it to an Arduino. A working project

would have a push button Clock input and 8

LEDs. The student would press the Clock a

large number of times (50-150 times,

depending on their implementation), and the

result 00001111 would appear on the output.

ACKNOWLEDGEMENTS

The author wishes to thank Dylan Tierney for allowing him to use pictures of his

work in this paper.

REFERENCES

[1] ACM/IEEE Joint Task Force on Computing Curricula. Curriculum Guidelines

for Undergraduate Degree Programs in Computer Science , 2013.

[2] Black, M., Komala, P. A full system x86 simulator for teaching computer

organization. SIGCSE Technical Symposium on Computer Science Education,

2011.

[3] Black, M., Waggoner, N. Emumaker86: A Hardware Simulator for Teaching

CPU Design, SIGCSE Technical Symposium on Computer Science Education,

2013.

[4] Burch, C. A graphical system for logic circuit design and simulation. Journal on

Educational Resources in Computing 2:1, 2002, pages 5-16

[5] Garton, J. 2005. ProcessorSim - a visual MIPS R2000 Processor Simulator.

http://jamesgart.com/procsim/

[6] Williams, S. http://iverilog.icarus.com/

[7] Wolffe, G. ,W.Yurcik,H.Osborne,M.Holliday. Teaching Computer

Organization/Architecture with Limited Resources using Simulators. ACM

SIGCSE Bulletin Volume 34, Issue 1, Pages 176-180.

26

	Export to Arduino: A Tool to Teach Processor Design on Real Hardware
	Virtual Commons Citation

	JCSC31_6.pdf

