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EXTENDED ABSTRACT 

In places that experience snow and ice, road clearing and deicing operations are a necessity to 

ensure that road networks remain open and safe for travel. Such operations, however, are costly to 

both taxpayers and the environment making it all the more important that they are used in an 

efficient manner. Efficient use of road treatment resources takes experience on the part of the road 

network manager as well as access to reliable road surface temperature (RST) data which are used 

to determine when roads are conducive to snow and ice accumulation. On major roads and 

highways, road surface temperature is primarily obtained via road weather information systems 

(RWIS), thermal mapping, or a combination of the two methods. RWIS data are collected 

remotely from roadside weather stations which transmit meteorological readings and RST to a 

central computer running a predictive model such as HS4Cast (Hertl and Schaffar, 1998) or 

METRo (Crevier and Delage, 2001). RWIS are, however, limited in their usefulness because they 

only provide forecasts at their specific point locations. In reality, road surface temperatures can 

vary as much as 10°C at any given time depending on spatial location due to a number of 

interacting meteorological and geographical parameters (Shao et al., 1996). Thermal mapping was 

first described in the 1980s as a method to obtain RST in areas between roadside weather stations, 

thereby incorporating the spatial component of RST prediction (Gustavsson and Bogren, 1988). 

This method uses an infrared camera attached to a vehicle which travels along a subject route 

collecting data serving as a thermal “fingerprint” of the road surface that displays spatial variations 

of RST. When combined with RWIS data for verification, thermal mapping has proven to be an 

effective and economical method to visualize RST for large road networks (Shao et al., 1996).  

RWIS and thermal mapping, however, are not universally used and may be impractical for 

certain areas such as southeastern Massachusetts that are in close proximity to the ocean and have 

very limited access to in situ road temperature data. This region of New England frequently 

experiences dramatic horizontal gradients of air temperature within short distances especially 

along the coast due to the influence of relatively warm ocean winds. This, combined with the 

unpredictable nature of ocean storms, introduces complexity to models and creates a challenge for 

road network managers to identify where and when conditions are right for the accumulation of 

ice and snow on roadways. Roadside weather stations for RWIS exist in this area, but are usually 

restricted to major state roads and are too few to verify thermal maps. As a result, local 

jurisdictions are required to decide when to dispatch road crews primarily based on visual 

interpretations of road conditions, which can be inefficient for large areas. There is much research 

describing methods to create point specific forecasts of RST on major roads, but little addressing 

the needs of local road networks without RWIS. Considering this fact, this ongoing project 

attempts to develop an alternative to thermal mapping and RWIS by indirectly estimating road 

surface temperature using Geographic Information Systems (GIS) and numerical modeling with 

metrological and geographical parameters. 
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METHODS 

The study domain consists of three Massachusetts towns, Duxbury, Pembroke, and Hanson, and 

a twenty-four kilometer stretch of route MA-14 which intersects the towns. The road was chosen 

because it runs nearly perpendicular to the coastline, experiences various changes in topography, 

and travels through a number of different land use types. The area is one that would greatly benefit 

from having an alternative method for road surface temperature prediction to due to its coastal 

location and lack of RWIS data. 

By statistical analysis techniques, it is known that patterns of road surface temperature across a 

network are closely tied to patterns of air temperature and solar radiation (Bogren and Gustavsson, 

1991). These variables are therefore used as the basis for identifying spatial variation of road 

surface temperature. Due to the lack of availability of RST data in the study domain, two 

strategically placed roadside weather stations were deployed within 3 km of each other in two 

different land use types. Between March 6, 2014 and April 24, 2014 each station collected wind, 

air temperature, global solar irradiance, and road surface temperature data, and was defined 

geographically using parameters identified by Chapman et al. (2001) including land use and 

topography. The two stations were also used to verify the model developed, as well as provide 

insight on the differing conditions of two points within the study domain. 

Efforts to identify patterns of the horizontal air temperature gradient were centered on 24 data 

runs along MA-14. The runs were carried out by affixing a probe to the front bumper of a car 

which traveled along the study route taking 10 second air temperature samples. This procedure 

resulted in data records which were used to identify patterns of air temperature change as the coast 

is approached under varying weather conditions and times of day. Run data were also used to 

locate points along the route which showed signs of influence from known phenomena such as the 

heat island effect (Johnson, 1985) and cold air pooling (Whiteman et al., 2001). If consistent 

patterns were found at certain points along the route, the change of temperature was attributed to 

the land use type of the location. 

A numerical model is being developed using statistical analysis of the results to predict road 

surface temperature using common meteorological and geographical parameters. ESRI’s ArcGIS 

software was utilized to input spatial information, calculate, and produce output for the model. 

Considerations were made to ensure that input data are easily accessible to the public using only 

existing Automatic Weather Stations (AWS) within or nearby the study domain.  

RESULTS AND DISCUSSION 

Table 1. Summarization of mean station readings between March 6 and April 24, 2014 

 Mean daytime 

irradiance 

reading 

(W/m2) 

Mean daytime 

RST (°C) 

Mean 

nighttime RST 

(°C) 

Mean air 

temp. (°C) 

Mean daily 

wind speed 

avg. (m/s) 

Station 1 469 13.9 5.1 5.1 0.4 

Station 2 92 8.6 3.7 4.7 0.1 

Difference 1-2 377 5.3 1.4 0.4 0.3 

 

The greatest differential between the two stations was in irradiance readings followed by 

daytime RST. Forested areas are known to be places where screening of solar radiation from 

vegetation plays a significant role in reducing the amount of short-wave radiation which can reach 

the road surface. (Bogren, 1991). The lower the amount of short-wave radiation that reaches the 

surface, the lower the RST values will be. At night, with irradiation at zero, the RST gap between 

the two stations closes and follows the pattern of air temperature closer, but Station 1 still records 

the highest mean. This phenomenon can best be attributed to the roadway’s thermal memory in 

which it retains its heat through the night (Thornes, 1991). This would make roadways that are not 

shaded by vegetation less susceptible to freezing in the evening because they have a higher initial 

temperature. Heavily screened areas, such as the location of Station 2, would have a higher risk of 

freezing even on nights when most of the road network is too warm to freeze.  



The small distance between the two stations showed a minor, but notable difference of air 

temperature. Considering that the two stations were in areas that are not highly conducive to cold 

air pooling or the heat island effect, it is assumed that the slightly lower air temperature reading at 

Station 2 was caused by its closer proximity to the relatively cold ocean. There may be some 

instrument error introduced here, but considering that the pattern between the two stations matches 

that of other local stations, proximity to the ocean was determined to be the primary variable of air 

temperature change over the spatial domain.  

 
Figure 1. A comparison of two distinct patterns of coastal air temperature change. 

 
Among the 24 data runs along the study route, a linear rate of air temperature change, as shown 

in Scenario 2, Figure 1, was seen in 80% of the cases. The remaining 20% displayed a pattern 

similar to Scenario 1 in which air temperature increased or decreased suddenly at a point 

approaching the ocean. This feature would be characteristic of a coastal front which frequents the 

region. There was minimal change in air temperature as the car drove through different land use 

types except through notable heat islands around 6.5 and 14 km. Air temperatures had a tendency 

to spike in these areas with the largest deviation from the linear pattern of approximately 1°C. 

There was no evidence of significant cold air pooling in the runs due to the lack of nights with 

favorable conditions. The identification of areas along the study route, that are susceptible to cold 

air pooling, will likely be a topic of future research.  

Each run was associated with meteorological data reported from the nearest ocean buoy as well 

as field measurements to identify patterns in the run. In general, with an ocean wind, greater 

differences between inland air temperature and ocean air temperature caused a steeper horizontal 

air temperature gradient. The higher the wind speeds over the ocean, the closer the coastal air 

temperature was to the temperatures reported from the buoy. Runs that were made with west 

winds showed the lowest ocean influence overall. 

THE MODEL (CRSTM) 

The preliminary version of the Coastal Road Surface Temperature Model (CRSTm) follows: 
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Air temperature (Ta) is provided by a trusted weather station in, or near, the study domain and 

may be modified using formula 3 below depending on the influence of the ocean winds. In the 

absence of location specific irradiance data, calculated clear sky irradiance (Qi) combined with 

cloud cover attenuation (S) can substitute. S can be determined using an adaption of the cloud 

cover attenuation formula described by the Tennessee Valley Authority (1972): 
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where S describes the relationship of clear sky irradiance to clouded sky irradiance and N 

represents the total opaque cloud cover. Total opaque cloud cover is attainable from most airports 

with AWS and can be considered constant over the entire study domain. The variable (Qmax) 

stands for the theoretical daily maximum of hourly irradiance which can be derived from using 

either the Ryan–Stolzenbach (1972) or Bras (1990) algorithm. The value corrects for the changing 

angle of the sun throughout the year and was obtained simply by using a Microsoft Excel program 

developed by Greg Pelletier of the Washington State Department of Ecology. The land use code 

(l) is a categorical variable which acts as a correction for the different environmental conditions 

for roads that travel through multiple land use types. Station 1 is categorized as low-density 

residential and is assigned an l code of 19. Station 2 is categorized as forest and has an l code of 

20.5. The numbers were obtained on a trial and error basis which can be repeated for any land use 

type.  

The following formulas can be used to roughly estimate air temperature at a given distance from 

the ocean within the study domain using data supplied by local trusted weather stations. It is 

important to note that this method is a simplification of a complex system and only works when 

there is a linear air temperature change as the coast is approached. 

                                                                                 (3)   

 

Inland air temperature (Ti) is obtained from the nearest trusted weather station that is ideally 

west of the road in question. The shorter the distance from the road to the trusted station, the 

higher the chances are for an accurate estimate of air temperature. The variable denoted (e) is a 

numerical value between 0 and 1 and was created to specify whether winds are prevailing from the 

ocean. In the case of the study area, the value would be 1 if winds were blowing from the SE, E, or 

NE. Other wind directions would be denoted as 0. Ds is the distance of the trusted weather station 

in kilometers from the coast in the direction of the prevailing winds. Dp represents the distance of 

the road in km to the coast. The rate of temperature change (r) from the coast can be found using: 

 

          
     

  
                                                                 (4) 

 

where Tc is the approximated air temperature at the coast. Tc can be found according to:  

 

            
     

 
                                                       (5) 

 

The calculation of Tc requires the collection of data from a nearby ocean buoy. The buoy used to 

verify the model is approximately 30 km from the coast of the study area. Wind speed is denoted 

as w and is reported from the nearest ocean buoy in m/s. To represents the air temperature over the 

ocean. 

APPLICATION OF GIS 

The CRSTm requires no spatial information, other than l, to produce RST estimates so long as it 

has access to location specific irradiance and air temperature readings. In practice, these types of 

data are rarely available at a high enough resolution for road network modeling of RST. GIS is a 

vital component of the model as it serves as a way to input spatial information and produce a 

visual output for all areas without in situ data. Applying spatial information to the model comes in 

the form of modifying clear sky irradiance and air temperature inputs as well as incorporating 

geographic parameters such as land use (l).  

Solar Radiation tools in ArcGIS use hemispherical view shed algorithms defined by Rich et al., 

(1994) to produce high resolution solar radiation maps from digital elevation models. Typically 

used for determining potential locations for solar panels, the tools provide an output of global 

solar irradiation in W/m
2
 which can be directly applied to the model. To compensate for screening 

caused by forests or buildings, it is possible to modify the digital elevation model using land use 



and building footprint data, which is made available by Massachusetts GIS (Massachusetts 

Geographic Information Systems). Although it is possible to adjust the solar radiation tools to 

compensate for cloud cover, the most accurate results seem to come when they are set to produce 

clear sky values, followed by formula 2. Ocean proximity can be found using the proximity tool, 

which outputs a distance which can be used in the estimation of air temperature for any given 

point in the study area using formulas 3, 4, and 5. Calculation of the model can be completed 

using the built in raster calculator and outputted on a map with overlaid modeled RST. 

MODEL VERIFICATION 

Figure 2. Model performance under clear and calm conditions for March 8-9, 2014 at Station 2. 

 
Figure 3. Model performance under overcast and stormy conditions for March 12-13, 2014 at Station 

2. 

 
The patterns on the verification graphs were consistent between the two stations. Station 2 

verifies the model most accurately with a mean error of 0.63 with a standard deviation of 2.93. 

The mean error was less for Station 1 at 0.24, but the standard deviation of 4 shows greater 

variability. The effort is ongoing to resolve the inaccuracies which are greatest in the morning and 

late afternoon hours on clear and calm days as shown in Figure 2. Errors at these times are likely 

the result of the differing rate at which roadways and air change temperature. When the sun rises 

on clear days, air temperature increases rapidly until midday, when it reaches its peak and begins 

to drop. RST has a very similar pattern, but is delayed temporally. The model output reflects this 

delay. Overall, the model performs best on overcast and stormy days, such as those seen on March 

12 and 13 in Figure 3. 
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CONCLUSIONS AND FUTURE WORK 

At the time of this publication, the CRSTm has the capability of providing reasonably accurate 

estimates of road surface temperature. There are inherent difficulties of trying to obtain road 

surface temperature without in situ data because no two locations on the earth’s surface are exactly 

alike. Despite this, the results have shown that it is possible to model RST using meteorlogical 

data coupled with geographical parameters at a decent level of accuracy. Although the CRSTm is 

not yet ready for real-world use, there is much confidence that accuracy will improve with further 

research. Literature review suggests the significance of geographical parameters such as sky-view, 

screening under differing cloudcover conditions, and road construction, which have an effect on 

RST (Chapman et al., 2001). These parameters also play a role in the rate at which the road 

surface increases or decreases in temperature which was determined to be a primary cause of error. 

There will also be further study to identify factors of the l code which is likely a function of 

meteorological and geographical variables influenced by the land use surrounding the road. It 

would also be beneficial to identify more l codes for different landuse types along the route. This 

will be accomplished by either relocating the current roadside weather stations or the deployment 

of small, portable stations througout the study area. A full winter’s RST dataset is expected to be 

completed in April of 2015 and will be used to verify the model throughout the winter under a 

greater variety of conditions. 
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