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ABSTRACT

Replication by Escherichia coli DNA polymerase III
is disrupted on encountering DNA damage.
Consequently, specialized Y-family DNA polymer-
ases are used to bypass DNA damage. The protein
UmuD is extensively involved in modulating cellular
responses to DNA damage and may play a role in
DNA polymerase exchange for damage tolerance. In
the absence of DNA, UmuD interacts with the a
subunit of DNA polymerase III at two distinct
binding sites, one of which is adjacent to the
single-stranded DNA-binding site of a. Here, we
use single molecule DNA stretching experiments
to demonstrate that UmuD specifically inhibits
binding of a to ssDNA. We predict using molecular
modeling that UmuD residues D91 and G92 are
involved in this interaction and demonstrate that
mutation of these residues disrupts the interaction.
Our results suggest that competition between
UmuD and ssDNA for a binding is a new mechanism
for polymerase exchange.

INTRODUCTION

DNA polymerase III (DNA pol III) holoenzyme is a
10-subunit protein complex that efficiently and accurately
replicates the entire genome of Escherichia coli (1,2). It is
composed of three subassemblies: the polymerase core, the
b processivity clamp and the clamp loader complex.
Polymerase and proofreading activities are conducted by
the core sub-assembly, which consists of the polymerase
subunit a, the proofreading subunit e and the y subunit,
which has a role in stabilizing the core (3,4). The

b processivity clamp encircles the DNA and provides a
platform for the polymerase core to bind, providing a
with access to the primer-template and facilitating
processive replication. The clamp loader complex, which
consists of the g, d, d0, t, � and c subunits, loads the
b clamp onto the DNA (5) with t tethering the polymerase
core to the replisome (6), and coordinating simultaneous
replication of the leading and lagging strands of the rep-
lication fork (6,7).
Although DNA pol III efficiently replicates undamaged

DNA, replication is disrupted upon encountering
damaged bases (8–11). Formation of a RecA filament on
accumulated single-stranded DNA (ssDNA) triggers the
SOS response (12), resulting in the upregulation of genes
encoding numerous proteins involved in DNA damage
repair and tolerance (13). These proteins include the po-
tentially mutagenic Y-family polymerases DNA pol IV
(DinB) and DNA pol V (UmuD02C) (14–16).
Replication of damaged DNA can proceed once DNA
pol III a is replaced with one of these Y-family polymer-
ases, which can replicate damaged DNA in a process
known as translesion synthesis (17–20). DNA pol V is
composed of two subunits, the cleaved form of UmuD
and the UmuC polymerase. DNA polymerase manager
protein UmuD regulates the cellular response to DNA
damage in part, along with UmuC, by decreasing the
rate of replication, thereby allowing time for non-muta-
genic DNA repair processes to occur (21–23). UmuD
undergoes a RecA/ssDNA-facilitated auto-cleavage of
24 amino acids of its N-terminal ‘arms’ to form UmuD0.
UmuD forms a tight dimer (UmuD2), which is the pre-
dominant form for the first 20–40min of the SOS response
after which the cleaved form UmuD0 is the predominant
species (22,24). Although UmuD and UmuD0 are expected
to be dimeric under all the conditions studied here (25) for
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simplicity, we will refer to these dimeric forms as UmuD
rather than UmuD2 and UmuD0 rather than UmuD02, re-
spectively. UmuD also regulates mutagenesis in the cell
through its interaction with the Y-family DNA polymer-
ase DinB, by inhibiting DinB-dependent �1 frameshift
mutagenesis, and with UmuC (14,26,27).
UmuD interacts with several components of DNA pol

III, including the polymerase subunit a, the b clamp and
the proofreading subunit e (28). Recent ensemble biochem-
ical experiments have shown that there are two UmuD-
binding sites on the a subunit, one in the N-terminal
domain and one in the C-terminal domain (29) (Figure
1). The C-terminal binding site (residues 956–975), which
has higher affinity for full-length UmuD relative to the
cleaved form UmuD0 (29), is adjacent to the b clamp
binding site (residues 920–924) (30), which tethers the poly-
merase to its DNA template. UmuD, but not UmuD0,
releases a from the b clamp, which may inhibit DNA rep-
lication and facilitate polymerase exchange (29). The C-
terminal UmuD binding site of a is also adjacent to the
OB-fold (residues 975–1160), through which a binds
ssDNA (31), suggesting that UmuD may be competing
with ssDNA for binding to a. We hypothesized that one
wayUmuD contributes to a DNA damage checkpoint is by
disrupting the interaction between a and ssDNA, thereby
inhibiting replication. To test this hypothesis, we have used
single molecule DNA stretching to quantify a binding to
ssDNA in the presence of wild-type UmuD and several
UmuD variants designed from a computational docking
analysis of the complex. We find that wild-type UmuD
competitively inhibits a binding to ssDNA through
UmuD-a interactions, whereas a single amino acid substi-
tution, D91K in UmuD, disrupts this inhibition.

MATERIALS AND METHODS

Proteins and plasmids

Wild-type UmuD was expressed from the pSG5 plasmid
in BL21 (DE3) (Novagen) as previously described (32,33).
UmuD D91 and G92 were changed to lysine by site-
directed mutagenesis of pSG5 using the QuikChange Kit
(Agilent) and confirmed by sequencing the resulting

plasmids (Macrogen USA). Wild-type UmuD and all
variants were purified as previously described (32).

Wild-type DNA pol III a was expressed from the
pET28a-a plasmid in Tuner competent cells (Novagen)
and purified using both a Nickel His-trap column (GE
Healthcare) and a heparin column (GE Healthcare) as pre-
viously described (29). Fractions collected after the heparin
columnwere diluted 6-fold with buffer HA [50mMHEPES
(pH 7.5); 1M NaCl; 2mM beta-mercaptoethanol; 20%
glycerol] and loaded onto a hydroxyapaptite column
(BioRad Bioscale Mini CHT Type 1, 5ml, 40 mm cartridge)
to concentrate the protein; protein concentrator devices
were avoided because they significantly reduced the stabil-
ity and activity of DNA pol III a. After washing with
10 column volumes of buffer HA, buffer HB [100mM
sodium phosphate (pH 6.5); 1M NaCl; 2mM beta-
mercaptoethanol; 20% glycerol] was used to elute the
protein from the column isocratically in 2 column
volumes. Fractions containing DNA pol III a were
dialyzed against protein storage buffer [50mM HEPES
(pH 7.5); 150mM NaCl; and 50% glycerol] and stored
at �20�C.

Single molecule DNA stretching

In DNA stretching experiments with optical tweezers, a
single � DNA molecule is captured between two polystyr-
ene beads inside a flow cell. One bead is fixed on a micro-
pipette tip, and the other is held in a dual-beam optical
trap (34). As the fixed bead is extended at 100 nm/s, the
tethered DNA molecule exerts a force on the trapped
bead, which is measured by deflection of the trapping
laser beams. The force on the DNA molecule is
measured as a function of DNA extension. As the DNA
is stretched, the double-stranded DNA (dsDNA) helix
undergoes a force-induced melting transition into
ssDNA (Figure 2A). The bases anneal on DNA release,
exhibiting minimal hysteresis, or mismatch between the
extension and release curves. After the DNA is stretched
and released in buffer only [10mM HEPES, 100mM Na+

(pH 7.5)], the solution in the flow cell is exchanged to
include protein. Subsequent force-extension curves are
obtained in the presence of a, UmuD, or both proteins.

7195380821 1160
polymerase domain (HhH)2

τβ DumUDumU

PHP domain OB 

ssDNA
1 2 3

β binding site: 
residues 920-924

1

UmuD binding site: 
residues 956-975

2

ε

ssDNA binding site: 
residues 978-1078

3

Figure 1. Diagram of DNA pol III a, with domain labels within the boxes and known interaction sites above the boxes (sequence numbering shown
below). The two UmuD binding sites, one in the N-terminal domain and one in the C-terminal domain of a, are shown in yellow (29). The CTD
binding site (residues 956–975) is adjacent to the b clamp binding site (residues 920–924, shown in blue) (30), and recent biochemical experiments
show that UmuD displaces a from the b clamp (29). This UmuD binding site is also adjacent to the OB fold (red), where ssDNA binds a (31), an
observation that led us to hypothesize that UmuD also inhibits a binding to ssDNA.

8960 Nucleic Acids Research, 2013, Vol. 41, No. 19

-
,
-
-
-
ile
(
,
)
L
(cv) 
(
,
)
cv
(
,
)
-
up
(
,


Force-extension curves in the presence of 250 nM a
alone exhibit significant hysteresis, as protein bound to
the exposed ssDNA prohibits the two strands from an-
nealing on DNA release. All single molecule experiments
were performed by waiting at fixed extension for 30min
before DNA release, which has been established as a
quantitative method of characterizing a binding to
ssDNA (31). The fraction of ssDNA bound fss may be
described in terms of observed length b (31):

bðFssÞ ¼ bds 1� fssð Þ+ bssfss ð1Þ

where bds as a function of force F is described by the
Worm-Like Chain model:

bdsðFÞ ¼ Bds 1�
1

2

kBT

PdsF

� �1
2

+
F

Sds

" #
ð2Þ

with persistence length Pds, end-to-end or contour length
Bds and stretch modulus Sds. The Freely-Jointed Chain
model describes the polymer elasticity of ssDNA:

bssðFÞ ¼ Bss coth
2PssF

kBT

� �
�
1

2

kBT

PssF

� �
1+

F

Sss

� �
ð3Þ

The Worm-Like Chain and Freely-Jointed Chain
polymer models shown in Figure 2 have typical parameter
values [Bds=0.34 nm/bp, Pds=48 nm and Sds=1200 pN
in Equation (2), Bss=0.55 nm/bp, Pss=0.75 nm, and
Sss=720 pN in Equation (3)]. As previously described,
the fits were confined to forces below 40 pN (31) to elim-
inate effects from changes in the force-extension curve of
ssDNA due to protein binding.

These experiments were repeated in the presence of both
a and UmuD, and the fraction of a-bound ssDNA fss as
a function of UmuD concentration cs was fit to a simple
competitive DNA-binding isotherm:

fss ¼ 1�

cs
Kapp

d

1+ cs
Kapp

d

 !
fsat ð4Þ

where Kapp
d is the apparent equilibrium dissociation

constant between UmuD and a in the presence of
ssDNA, and fsat is saturated a-ssDNA binding. A minor
correction to added UmuD concentration c accounts for
UmuD bound to a in solution; therefore, effective UmuD
solution concentration cs is (35):

cs ¼
c

1+Kac�
ð5Þ

where Ka=9.1� 10�5M�1 is the equilibrium association
constant between UmuD and a in bulk solution (29) and
the a concentration ca is 250 nM.

Protein–protein docking

Protein–protein docking models were used to predict
residues involved in the binding interaction between a
and UmuD. The structures used for these docking
models were a homology model of UmuD (33) and a
homology model of full-length DNA pol III a (36).
Protein complexes were predicted by docking DNA pol
III a with UmuD using ClusPro 2.0 (37–40), GRAMM-
X (41) and PatchDock (42). The top 10 results from each
method were analyzed and compared. Local docking was
performed using the RosettaDock server (43).

Thermal stability assay

A thermal stability assay was used to determine the
melting temperature of UmuD variants relative to wild-
type, as previously described (44). To determine whether
mutations at positions D91 and G92 disrupt the stability
of UmuD, melting temperatures of these variants were
compared with those of wild-type. Samples containing
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Figure 2. DNA pol III a binding to ssDNA characterized with single molecule force measurements. (A) Typical extension (solid black) and return
(dashed black) of a single DNA molecule. The molecule undergoes a force-induced melting transition from dsDNA [red, Equation (2)] to ssDNA
[blue, Equation (3)] at 62.6±0.5 pN. (B) In the absence of protein (black), the DNA molecule anneals immediately on release, exhibiting minimal
hysteresis, or mismatch between the stretch (solid) and release (dashed) curves. The force extension curves in the presence of 500 nM UmuD are the
same within uncertainty as those of DNA only (purple), which shows that UmuD does not measurably bind DNA. In the presence of 250 nM a
(green), pausing at a fixed DNA extension (dashed arrow) after the melting transition exposes ssDNA to a for 30min, as previously described (31).
On DNA release, a remains bound to the ssDNA (open circles), prohibiting the two strands from annealing. The DNA molecule is therefore a
combination of dsDNA and protein-bound ssDNA, and fitting the release curve (open circles) to Equation (1) (solid line) yields the fraction of
ssDNA bound to a (fss=0.58±0.02).
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20 mM of each variant in 50mM HEPES (pH 7.5),
100mM NaCl and 25� Sypro Orange (Invitrogen) were
exposed to temperatures from 25�C to 80�C while moni-
toring the fluorescence emission intensity at 575 nm.
Melting temperatures Tm were determined by taking the
first derivative of the melting curves, as previously
described (29).

RecA/ssDNA facilitated cleavage assay

Reactions were assembled as previously described (33) and
incubated at 37�C for 45min. After incubation, the cleaved
product UmuD0 was separated from full-length UmuD
using 18% SDS–PAGE. Bands were then analyzed using
the image analysis software ImageQuant TL (Amersham
Biosciences). Control reactions in the absence of RecA,
ssDNA and adenosine-50-3-thiotriphosphate gS were
carried out to determine the amount of UmuD0 present
due to spontaneous cleavage.

Tryptophan fluorescence assay

The equilibrium dissociation constants Kd between DNA
pol III a and the UmuD variants were determined with a
Varian Cary Eclipse Fluorescence Spectrophotometer, as
previously described (29). DNA pol III a [5 mM in 50mM
HEPES (pH 7.5) and 100mM NaCl] was titrated
with varying volumes of 200–400 mM UmuD variants.
Tryptophan fluorescence quenching was used to quanti-
tate binding constants, as previously described (29).

RESULTS

UmuD inhibits a binding to ssDNA

In DNA stretching experiments, a single double-stranded
�-DNA molecule was captured between two polystyrene
beads, one held in an optical trap and the other fixed on
a micropipette tip. As the distance between the beads

increases, measurements of the force on the DNA
molecule yield a force-extension curve (Figure 2A, solid
black line). At a constant force of 62.6±0.5 pN, the
dsDNA molecule undergoes a force-induced melting tran-
sition to ssDNA. This overstretching transition has been
established as force-induced melting in the presence of
DNA-binding proteins such as a, which is the case for
the experiments presented in this work (34). When the
tension on the DNA molecule is released (Figure 2A,
dashed black line), the ssDNA generated by force
anneals immediately into dsDNA, and the curve exhibits
minimal hysteresis, or mismatch between DNA extension
and release curves. The molecule is a well-characterized
combination of dsDNA and ssDNA along the force-
induced melting transition (45); therefore, waiting at
constant extension for a fixed time exposes ssDNA to
proteins in solution. The protein-bound ssDNA exhibits
a change in observed length on DNA release, which is a
direct measurement of protein binding to ssDNA. This
single molecule technique has been established as a quan-
titative method of characterizing a–ssDNA binding (31).
As expected, constant extension experiments in the
presence of 250 nM a exhibit large hysteresis, indicating
significant ssDNA binding (Figure 2B). Fits to Equation
(1) yield the fraction of ssDNA bound by a, which agrees
with previous results obtained by this method (31).

Introducing the DNA damage response protein UmuD
disrupts the binding of a to ssDNA (Figure 3A). Constant
extension experiments generate ssDNA for 30min in the
presence of both a and UmuD, and the fraction of ssDNA
bound by a decreases with UmuD concentration. Control
experiments demonstrate that UmuD does not bind DNA,
as force extension curves in the presence of UmuD are the
same within uncertainty as those of DNA only (Figure 2B,
purple). Therefore, the interaction between UmuD and a
inhibits a binding to ssDNA. A simple DNA-binding
isotherm [Equation (4)] fit to the fraction of a bound as
a function of effective UmuD concentration in solution
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�2 fit to a simple DNA-binding isotherm [Equation (4)] that yields apparent equilibrium dissociation constant Kapp

d =340±103 nM between UmuD
and a in the presence of ssDNA, and a saturated a-ssDNA binding fraction (fsat=0.51±0.05) consistent with previous single molecule results (31).

8962 Nucleic Acids Research, 2013, Vol. 41, No. 19

,
x
utes
-
due 
(
,
)
 - 
,
so 
up
-
utes
ince


yields the apparent equilibrium dissociation constant
Kapp

d =340±103 nM between UmuD and a in the
presence of ssDNA (Figure 3B).

Specific UmuD variants disrupt the UmuD-a interaction

To predict potential a binding sites on UmuD, we used
three global protein–protein docking methods. All three
methods predicted an ensemble of complexes with UmuD
binding near the N-terminal domain and C-terminal
domain of DNA pol III a, consistent with the two previ-
ously characterized UmuD binding sites (29). At the C-
terminal domain, a number of docking models suggested
the formation of a salt bridge (Figure 4A) between the
arginine residue of DNA pol III a at position 1068
(Figure 4B) and the aspartic acid residue of UmuD at
position 91 (Figure 4C). As a result, UmuD residues
D91, along with its adjacent neutral residue G92, were
each mutated to lysine to disrupt this salt bridge
(Figure 4C). We did not construct corresponding
mutants in DNA pol III a at position 1068 because such
a mutant would likely disrupt DNA binding as well.

To verify that the mutations did not destabilize UmuD,
the melting temperatures of each UmuD variant were
determined (Figure 5A). UmuD has two melting transi-
tions, which have been assigned to the dissociation of the
arms from the globular domain (see drawing in Figure 5A)
and the melting of the globular domain, respectively (46).
Both melting transitions of the UmuD variants are com-
parable with those of wild-type UmuD, indicating that the
variants are properly folded. To test the effect of each
mutation on the cleavage activity of UmuD, a RecA/
ssDNA-facilitated UmuD cleavage assay was also per-
formed. All variants were able to cleave efficiently to
form the cleavage product UmuD0 (Figure 5B); therefore,
these mutations do not alter UmuD enzymatic activity.
Because UmuD can undergo spontaneous cleavage,
control reactions where RecA/ssDNA was not added to
the UmuD variants were also carried out. The amount of
UmuD0 present in both the control reactions and the
reactions with RecA/ssDNA was quantified separately to
distinguish the amount of UmuD0 produced only in the
RecA/ssDNA-facilitated reaction (Figure 5B). Thus, the
UmuD variants constructed show similar stability and
similar RecA-ssDNA-faciliated cleavage efficiency as
wild-type UmuD.

As shown in Figure 6, in the absence of DNA, theUmuD
variant D91K disrupted the DNA pol III a-UmuD inter-
action by a 15-fold increase in Kd (18±1.7 mM, compared
with 1.1±0.6 mM for wild-type UmuD), whereas no
change was seen with the adjacent UmuD variant G92K
(Kd=1.3±0.5mM). When both positions were changed
to lysine, D91K-G92K, a similar effect of decreased
binding to a was observed (Kd=33±9.6mM), confirming
this position as a binding site for DNA pol III a. Although
it is initially surprising that an adjacent residue mutation
does not also disrupt UmuD-a interactions, unlike D91, we
predict that a side chain at 92 would be angled away from
the surface of UmuD (Figure 4A); therefore, it is less likely
to participate directly in the interaction.
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C 

Figure 4. Docking model predicts residues involved in the interaction
between DNA pol III a and UmuD. (A) The docking model predicts a
salt bridge between the C-terminal domain of DNA pol III a (pink)
and UmuD (yellow) at a residue R1068 (green) and UmuD residue D91
(blue). UmuD residue G92 (red) may also be involved in this inter-
action. (B) The homology model of a (36) showing arginine residue
R1068 (green). The C-terminal domain (residues 917–1160) containing
the binding sites for the b clamp, UmuD and ssDNA is shown in pink.
(C) The homology model of full-length UmuD (33) showing the
residues D91 (blue) and G92 (red) predicted to bind to DNA pol III
a by protein–protein docking studies. The arms of UmuD are shown
here in a ‘trans’ conformation where the arm of one monomer (both
arms shown in purple) is bound to the globular domain of the other
monomer (both globular domains shown in yellow). The active site
residues S60 and K97 (cyan) cleave the N-terminal arms (residues
1–24) to form UmuD0.
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Specific variants disrupt UmuD inhibition of a binding
to ssDNA

We used single molecule DNA stretching experiments to
test whether the three UmuD variants retain the ability
to disrupt binding between a and ssDNA. We previously
showed using this single molecule method that a possesses
two distinct DNA-binding activities: the (HhH)2 domain
binds dsDNA, whereas the C-terminal domain containing
the OB-fold domain binds ssDNA (31). This method
allows us to probe specifically the binding of a to
ssDNA without the potential complications of DNA sec-
ondary structure or dsDNA binding. The biochemical
results show that the D91K mutation compromises
the ability of UmuD to bind a, and single molecule ex-
periments demonstrate that the fraction of ssDNA bound
by a in the presence of 1 mM UmuD D91K is only slightly
smaller than that of a alone (Figure 7A). UmuD G92K
has an affinity for a similar to that of wild-type UmuD,
and DNA stretching shows that this variant retains most
of its ability to inhibit a binding to ssDNA (Figure 7B).
However, the double mutation D91K G92K yields a
UmuD variant whose binding to a is dramatically

weakened and is completely unable to disrupt a-ssDNA
binding (Figure 7C). UmuD residue D91 is therefore
required for UmuD to bind a and disrupt its binding
to ssDNA. Residue G92 also participates in the inter-
actions that are responsible for UmuD inhibition of
a-ssDNA binding. Collectively, these results show that
these direct interactions between UmuD and a are respon-
sible for the ability of UmuD to inhibit a binding to
ssDNA.

DISCUSSION

In this work, we used a single-molecule method to dem-
onstrate that UmuD inhibits the binding of a to ssDNA
through its interaction with a. The apparent equilibrium
dissociation constant Kapp

d between UmuD and a is 340±
103 nM in the presence of ssDNA, which is similar to a
previous measurement of the equilibrium dissociation
constant between a and UmuD (Kd=1.1±0.6mM)
determined by using a tryptophan fluorescence binding
assay in the absence of DNA. The reasonable agreement
between apparent binding affinity and direct binding
affinity implies that direct UmuD interactions with a are

0

10

20

30

40

50

60

70

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Fo
rc

e 
(p

N
)

Extension (nm/bp)

DNA only

D91K1 μM UmuD:
250 nM α

WT no UmuD

0

10

20

30

40

50

60

70

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Fo
rc

e 
(p

N
)

Extension (nm/bp)

DNA only

G92K1 μM UmuD:
250 nM α

no UmuDWT

0

10

20

30

40

50

60

70

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Fo
rc

e 
(p

N
)

Extension (nm/bp)

DNA only

no UmuDD91K-G92KWT1 μM UmuD:
250 nM α

0

0.1

0.2

0.3

0.4

0.5

0.6

Wild-type D91K G92K D91K-G92K no UmuD

Fr
ac

�o
n 

of
 s

sD
N

A 
bo

un
d 

to
 α

UmuD

A B

C D

Figure 7. UmuD variants have compromised ability to disrupt a binding to ssDNA. (A–C) Force extension (solid black line) and release (open
circles) curves for DNA in the absence (black) and presence of protein (open circles). Open circles are data points, and solid color lines are fits to
[Equation (1)], which yield the fraction of ssDNA bound by a. (A) The fraction of a-bound ssDNA in the presence of 1 mM UmuD D91K (blue,
0.54±0.02) is similar to that of a alone (green). The D91K variant lost the ability to inhibit a-ssDNA binding relative to wild-type UmuD (brown),
which indicates that the D91 residue is required for the interaction between a and UmuD that disrupts a binding to ssDNA. (B) The G92K variant
(red, 0.23±0.02) partially retains its ability to disrupt the interaction between a and ssDNA. (C) The D91K-G92K mutation (purple) fully abolishes
the ability of UmuD to disrupt a-ssDNA binding, and fraction of ssDNA bound to a is the same without the UmuD variant (0.58±0.02).
(D) Fraction of ssDNA bound to a in the presence of 1 mM UmuD variants. These single molecule results indicate that UmuD residue D91 is
essential for the interaction between UmuD and a that disrupts a binding to ssDNA, but G92 is also involved in the interaction.

Nucleic Acids Research, 2013, Vol. 41, No. 19 8965

,


responsible for ssDNA-binding inhibition. In addition, the
measured apparent binding affinity between a and UmuD
is within the range of cellular UmuD concentrations, sug-
gesting that this interaction plays an important role in
regulating a activity in vivo (47).
In addition to directly demonstrating that UmuD

inhibits a binding to ssDNA, we used protein–protein
docking models to identify potential UmuD–a interaction
sites. The resulting models predicted that binding between
UmuD and a involves UmuD residues D91 and G92
and a residue R1068. Biochemical experiments confirmed
that the corresponding UmuD variants exhibit a
compromised ability to bind a, despite the fact that the
variants were demonstrated to be thermally stable and
active for cleavage. Single-molecule experiments showed
that the D91K variant completely fails to disrupt the
a–ssDNA interaction, whereas the G92K variant only
partially inhibits the ability of a to bind ssDNA. These
results demonstrate that a direct a-UmuD interaction at
these residues is responsible for UmuD inhibition of
a–ssDNA binding. Another UmuD variant at position
91, D91A, has been shown to disrupt the UmuD–DinB
interaction (26), suggesting the existence of a general
binding site for polymerases on UmuD. In addition,
peptide mapping experiments show that this region of
UmuD provides a binding site for the protease ClpXP,
which plays a role in modulating mutagenesis by
degrading UmuD and UmuD0 as well as DinB (48,49).
Furthermore, the UmuD G92D mutation is poorly cleav-
able, but when this mutation was constructed in the
context of UmuD0, cells harboring this variant were
mutable to a similar extent as cells harboring wild-type
UmuD (50,51), suggesting that the G92D mutation does
not alter the ability of UmuD0 to facilitate UmuC-depend-
ent mutagenesis. On the other hand, the UmuD G92C
variant was as proficient for cleavage as wild-type
UmuD (52). Therefore, this region of UmuD seems to
be an important site for a number of protein interactions.
The C-terminal domain of a facilitates numerous inter-

actions necessary for efficient replication, as it interacts
with the b clamp (30), ssDNA (31) and the t subunit of
the clamp loader (53,54). The interaction between a and
the b clamp is essential for high processivity. However, as
replication on the lagging strand is carried out in a series
of Okazaki fragments that are synthesized in a discontinu-
ous manner, the polymerase on the lagging strand must be
recycled for each Okazaki fragment. Although the exact
mechanism of the processivity switch is unknown, the OB
fold of a has been implicated as a sensor for ssDNA such
that when synthesis of an Okazaki fragment is completed,
the affinity of a for the b clamp is decreased and a is
released from the clamp and from DNA (55–57). Thus,
the interaction between a and ssDNA is proposed to act as
a processivity switch. In this work, we demonstrated that
SOS-induced levels of UmuD inhibit binding of a to
ssDNA. UmuD also inhibits binding of a to the b
clamp, and these two mechanisms likely work together
to facilitate polymerase exchange.
UmuD, together with UmuC, specifically decrease the

rate of DNA replication and therefore were proposed to
participate in a primitive DNA damage checkpoint

(21–23). We previously showed that UmuD, but not the
cleaved form UmuD0, disrupts the binding of a to the b
clamp, which provides a possible molecular explanation
for the role of UmuD in a primitive checkpoint (29).
The question then arises of the role of UmuD disruption
of ssDNA binding by a. It has been shown that DNA
damage on the lagging strand does not disrupt DNA rep-
lication, whereas DNA damage on the leading strand may
severely disrupt replication or may cause leading strand
replication to occur discontinuously, as the polymerase
can re-initiate synthesis downstream of the damage
(8–10). Polymerases that encounter DNA damage can
also become stalled in a futile cycle of insertion and
excision of nucleotides (58), as they fail to copy the
damaged DNA. Our observations suggest that UmuD
would then rescue the stalled polymerase by preventing
a from binding to ssDNA or to the b clamp, thereby
allowing DNA repair proteins or translesion DNA poly-
merases access to the damaged DNA.

Taken together, our findings suggest that UmuD specif-
ically disrupts the interaction between a and ssDNA,
inhibiting access to the ssDNA template by the replicative
polymerase as part of the primitive DNA damage check-
point to allow DNA repair. UmuD may also prevent
binding of a to ssDNA to facilitate polymerase
exchange, allowing an error-prone translesion synthesis
polymerase to copy damaged DNA so that DNA replica-
tion may proceed. Our results demonstrate a new mech-
anism by which UmuD may regulate the cellular response
to DNA damage.
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