CONTENTS

The Midwestern Taxonomic Method and its Application to an Eastern Massachusetts Group
By Benjamin L. Smith ..Page 1

The Dolly Bond Steatite Quarry
By Ripley P. Bullen ...Page 14

Original Narrative Reprints (No. 3) ...Page 23

Hafting Artifacts the Indian Way
By William S. Fowler ..Page 27

By Benjamin L. Smith ...Page 33
THE MIDWESTERN TAXONOMIC METHOD AND ITS APPLICATION TO AN EASTERN MASSACHUSETTS GROUP

by

BENJAMIN L. SMITH

Introduction

This article in a rather abbreviated form was read before the Attleboro meeting of the Massachusetts Archaeological Society, but due to the complexity of the subject matter it was felt that it might be of interest to publish it. It was the hope of the writer that the method described below might serve as a useful tool in attacking local problems. It was also his hope that its acknowledged limitations might be lessened and its scope widened by members from other parts of the Nipmuc Territory. To date but one man has taken an active interest in it; it is hoped that many others will follow him with information or constructive criticism, and that a firm and correct basis may be laid down for our eastern manifestations. Massachusetts should lead - not follow.

* * * * *

In AMERICAN ANTIQUITY for April 1939, W.C. McKern published an article entitled "The Midwestern Taxonomic Method as an Aid to Archaeological Culture Study." "The method," he stated, "is the result of several revisions of the original plan, one made by representatives of the Milwaukee Public Museum and representatives of the Universities of Michigan, Chicago and Illinois; and the final one by the Indianapolis Conference of the National Research Council in 1935."

Mr. McKern states in his preamble (I have condensed this greatly) that, for purposes of classification, "The ethnologist divides the aborigines into linguistic stocks, which are then subdivided into more specific linguistic groups, and, finally, into socio-political groups. However, this method cannot satisfy the archaeologist as the greater part of his material is derived from excavation, and in no instance includes linguistic data."

He states further that "The word 'culture' has been used by the archaeologist in a manner which is extraordinarily indefinite and inaccurate, because, as his
studies lead him toward ever widening horizons, the archaeologist's conceptions of cultural manifestations take on broader interpretations, and the old meanings of words are stretched to serve purposes for which they were never intended." The results are chaotic.

The definitions of the word culture as given in Webster's New International Dictionary, Second Edition, include the following meanings that are applicable:

"5. a. A particular state or stage of advancement in civilization or the characteristic features of such a stage or state; as, primitive, Greek, Germanic, culture.

b. Anthropol. The trait complex manifested by a tribe or a separate unit of mankind."

For clarity it appears that we should state definitely whether the culture under consideration is that of a race, tribe, or group. If the culture is that of a tribe we may find that separate villages of the tribe exhibit slightly different shades of the same tribal culture and are not confusing; but if separate lodge sites belonging to individuals of the same village are examined, we may find their separate attainments so different as to appear to indicate two quite different cultures. This error would be caused by one lodge site diverging widely from the norm, and the variation would become apparent only after examination of other lodge sites had established the true cultural characteristics of the village.

It is apparent that the word culture should be employed with caution.

In the following survey the word culture will apply to the attainments of the Nipmuc people or tribe, as exhibited by sites in the Concord River Valley.

It should also be clearly understood that, while I have used the Concord Valley focus of the Nipmuc culture in setting up the more general classification, this is entirely incorrect, as it should be based on far wider distribution. This analysis is just a beginning, and must be amplified and modified by others.

Since the system expounded by McKern was obviously designed for the excavator working on new sites, his order of Component, Focus, Aspect, Phase, Pattern, Base is the proper method of attack, as it is impossible to correctly determine such broad classifications as Phase, Pattern or Base from a single site.
It appears to me that in New England, where tremendous numbers of artifacts from hundreds of sites are already recorded and (as in many cases) the sites have been completely destroyed, we should attack the problem by making a wide and general classification first, and then work down into the more precise divisions.

This preliminary classification should be set up by a conference of representatives from many districts equipped with the best possible records from many sites. Afterward, the classifications can be amplified and corrected by excavating untouched sites in the field.

In order to check the possibilities of the above suggestions, I have attempted to apply them to the problem of the Nipmucs without the necessary help of a preliminary conference. I selected the Nipmucs because through historical records we have a pretty good idea of the territory they occupied.

Mr. Lawrence K. Gahan of 128 Beacon Street, Worcester, to whom I applied for help on the problem of the Nipmuc boundaries, is responsible for the following outline. He has spent forty years studying the subject, and I give you his authoritative statements verbatim.

"Start at Putnam, Connecticut. Go northwest through Sturbridge to Ware, then westerly to Hadley. Go up the Connecticut River to Sunderland, then turn northeasterly through South Athol to Gardner, then southeast to Leominster, easterly to Ayer, southeasterly past Nagog Pond to Concord. Then south through Wayland, Cochituate to Sherborn; then southeast to Medfield, up the Charles River to Medway, then southwest to South Milford, Uxbridge, Douglas, and so back to Putnam, Connecticut, the starting point."

Will those members of the Society who are familiar with the cultures in this area please take it upon themselves to check the following outline, correct it where it is wrong and supply data to fill in the many missing links?

The Midwestern method makes use of certain preliminary definitions as follows:

1. A **Determinant** is a specific culture characteristic which is used as a marker for any one culture division, i.e., Focus, Aspect, Phase, etc.
2. Linked Traits are traits shared in common by each of two culture exhibits under comparison.

The investigator should select from the traits comprising a culture complex those traits which are sufficiently significant to qualify them as determinants. But, to be so employed, they must be characteristic of the complex they serve to identify.

With this in mind we proceed to examine the six divisions set up for differentiating between the highly specialized local exhibits and the broader and more general culture classifications. These six divisions are: Component, Focus, Aspect, Phase, Pattern, Base.

I have previously stated that this order is for the archaeologist working upward from a single site (or component) and that, as no true excavation preceded the following analysis, the system will be used in reverse order and is purely experimental.

APPLICATION OF THE MIDWESTERN TAXONOMIC METHOD TO THE NIPMUC CULTURE

1. A Base consists of a few basic characteristics, principally describing the quest for food, the type of community, or an outstanding product of the culture under investigation.

From a study of thousands of Nipmuc artifacts and at least one hundred camp and village sites, I have reached the conclusion that they were a semi-sedentary people, living on the shores of ponds, rivers and streams, who obtained their food principally by hunting and fishing. This nearly coincides with one of McKern's suggested bases; and I shall say, until I am corrected, that the base which includes the Nipmuc was a semi-sedentary, hunting-fishing base with some evidence of rudimentary agriculture. This statement should be checked against evidence from the whole Nipmuc territory.

3. A Pattern is made up of a series of culture determinants which reflect the primary adjustment of peoples to their environment. There are several fairly well defined patterns already set up, and in order to save time, we will compare the Nipmuc to the Woodland Pattern
which pertains principally to the northeastern area. The Woodland Pattern offers such determinants as the following:

a. Characteristic flexed burials.
b. Grit-tempered pottery with granular structure.
c. Intaglio surface decorations on unfired paste made by cords, or indenting tools of simple variety.
d. Stemmed and/or notched chipped stone points and knives.
e. Primary chipping more important than secondary.
f. Grooved Axes.
g. Semi-sedentary mode of life.

Comparison

a. In Concord five burials have been found; three were unrecorded and two were flexed.
b. Grit tempered pottery is the invariable rule, the structure is granular. Pottery is very scarce, but we have recorded:

<table>
<thead>
<tr>
<th>Site</th>
<th>Shards</th>
<th>Outside</th>
<th>Inside</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-23-9</td>
<td>30</td>
<td>9/30</td>
<td>28/2</td>
</tr>
<tr>
<td>M-23-53</td>
<td>2</td>
<td>0/2</td>
<td>2/2</td>
</tr>
<tr>
<td>M-23-35</td>
<td>2</td>
<td>0/2</td>
<td>2/2</td>
</tr>
<tr>
<td>M-23-36</td>
<td>1</td>
<td>0/1</td>
<td>1/1</td>
</tr>
<tr>
<td>M-23-26</td>
<td>1</td>
<td>0/1</td>
<td>1/1</td>
</tr>
</tbody>
</table>

or thirty-six sherds on five sites.

c. In analyzing the ornamentation of these sherds, we find the pottery to be mostly plain on the outside, and roughly smoothed with a narrow tool on the inside. The outside of sherds from M-23-9 show intaglio decoration in nine out of thirty cases. The balance are smooth. The inside surfaces of twenty-eight sherds are smooth and tan colored, and two show rough tooled black surfaces.

The two sherds from M-23-53 are smooth on both surfaces.

Of the two sherds from M-23-35, one shows both surfaces rippled, the other one smooth, one rippled.

The one sherd from M-23-36 is smooth on both surfaces.

The single sherd from M-23-26 is smooth on the inside, but exhibits a sharp, clean leaf-vein pattern on outside - done with graving tool.
d. Stemmed and/or notched points and knives are the rule in the Concord Valley. Although there are many trianguloids and other types, stemmed points predominate.

e. Primary chipping was, without question, more important than secondary. This can be clearly demonstrated by the most cursory examination of existing collections.

f. Grooved axes are common in all the older collections. The tool has been found on all of the large sites.

g. The semi-sedentary mode of life must be quite apparent if one looks at a site map of the river valleys. Out of something over one hundred sites, nineteen are semi-permanent villages, a fact which seems indicated by their large areas and the tremendous amount of material recovered. Also the fact should be noted that seventeen stationary mortars have been identified.

Therefore, upon comparing these determinants with those listed for the several Patterns, we find that they agree almost completely with the Woodland Pattern. This statement should also be checked against evidence from the whole Nipmuc territory.

3. **Phase** determinants are listed as being quite definite but rather basic characteristics such as:

a. General burial procedure.

b. General pottery attributes.

c. General house types.

d. Axes - quite generally grooved.

e. Steatite vessels.

As the Phase has to do with general clear-cut characteristics and there is little in the above three determinants to be of any help, I have listed tentatively several others for consideration.

f. Habitual use of quartz for majority of small points.

Comparison

a. The general burial procedure seems to have been flexed burials in shallow graves with
simple grave goods. No cremation, bundle or ossuary burials have been noted. Other observers have offered the suggestion that because so few graves have been found, the Indians may have practised crib or tree burial. This is purely an assumption for which we have no proof, and it should be thoroughly investigated.

b. The pottery attributes are not sufficiently clear (because of scarcity of material) to be of much assistance. The one attribute possessed by all sherds is grit tempering.

c. As no house floors have been found, I have nothing to say on the subject.

d. All the axes recovered on the large sites and most of the smaller sites are grooved, and while the grooves vary in their totality and number, the artifact seems to be an excellent determinant.

e. Every large site and many small ones have produced parts of steatite vessels of many shapes and sizes. The use of steatite was so general as to have been the rule.

f. Every site, large and small, produced numbers of small rough quartz points in proportion to its size. The use of quartz for small points of all types was habitual throughout the Concord River Valley.

Because of its wide area and general homogeneity I have called this phase tentatively THE CENTRAL NEW ENGLAND PHASE. The Phase determinants should be checked over the whole Nipmuc area as better ones will probably be found.

4. Aspect determinants are more specific amplifications of the Phase determinants, together with important additions in the form of linked traits, that is, traits exhibited by two or more areas under comparison.

Here again, as I am not sufficiently familiar with the traits of other parts of the Nipmuc territory, I must confine myself to a list of traits which I believe will be found elsewhere, but which appear general in the eastern area.

These traits are merely suggested and are, of course, subject to modification or correction. They are as follows:
a. Burials - flexed in shallow graves.
b. Pottery - grit tempered, intaglio, cord and herringbone design. Shape unknown, but important.
c. House type - unknown. (This knowledge is also important.)
d. Stone work:
 1. Arrowpoints: stemmed
 notched
 trianguloid
 leaf shaped
 2. Use of quartz for small points of all types.
 3. Knives
 4. Scrapers
 5. Drills or perforators.
 6. Grooved axes
 7. Gouges
 8. Plummets, both fine and rough.
 9. Steatite vessels
 10. Stationary mortars and pestles

Negative determinants are:

a. Bone industry.
b. Copper industry.
c. Tobacco complex (applies to Concord only so far).
d. Burial mounds.
e. Cremation, or ossuary burials.
f. Use of hematite.

Range - undetermined at present.

It is not necessary to further elaborate these traits as the method must now be apparent. I shall tentatively call this THE NIPMUC ASPECT.

5. Focus. Once the aspect has been established, the analyst can go to work on his own district as follows:

The aspect can be built up still further by adding the finer and less obvious traits from each important site in his district, to the aspect traits for the area. In each case he will form a trait-complex for each site. When the trait-complex from one site resembles that of another site in almost complete purity, the two or more sites are said to possess linked traits and together form a Focus.
From three sites in the Concord River Valley I have worked out a linked-trait complex as follows:

a. Arrowpoints:
 1. Stemmed
 2. Notched
 3. Trianguloid
 4. Leaf shaped
 5. Use of quartz for small points of all types.

b. Spearheads - over 3" long.
c. Knives - trianguloid and stemmed.
d. Scrapers - side and end.
e. Drills.
f. Axes - grooved.
g. Gouges.
h. Hammers - 1 chipped
 2 beach pebbles
i. Pendants - pierced.
j. "Banner stones".
k. Pottery - steatite only.
l. Pestles.
m. Turtle-back spalls.

Diagnostic traits (which appear in one or two sites, but not three):

a. Slate ulus 2
b. Celts 2
c. Plummets 2
d. Gorgets 1
e. Clay potsherds.
f. Gravers 1
g. Sinkers 1

I have called this the Concord Valley Focus. Range undetermined, but known to exist in Sudbury and Concord.

6. Component. When one site displays all the linked-traits of the focus it is called a component, and for that classic site I have selected the Bedford Plains area, for which the list of diagnostic and linked traits is as follows:

 Burials - none.
 House sites - none (18 stone paved fireplaces found).
Summary.
Classification of the Nipmuc Culture According to the
Midwestern Taxonomic Method

Base

Semi-sedentary - hunting - fishing - rudimentary agriculture. (Settlements, (many of them villages) almost always near rivers, brooks and ponds.)

Pattern

Woodland - The determinants are:

a. flexed burials.
b. grit tempered pottery
c. intaglio decorations on unfired paste by cords and pointed tools
Nipmuc - Aspect

c. stemmed and notched chipped points and knives
d. primary chipping of paramount importance
e. grooved axes
f. semi-sedentary life

g. grooved axes

Central New England - The determinants are:

Phase

- McKern -
 a. Flexed burials - we have no evidence of anything else.
 b. grit tempered pottery - too scarce to be of much value
 c. house types - no evidence at all
 d. axes grooved

- Smith -
 e. steatite vessels
 f. quartz - used for all types of small points

Aspect Nipmuc - the determinants are:

(Note. These determinants are based on the Concord focus. Some may be eliminated as information from other areas comes in.)

- a. burials flexed in shallow graves
- b. pottery - grit tempered, intaglio and cord decorations on unfired paste, shape unknown
- c. house type - unknown
- d. stone work
 1. arrowpoints, stemmed, notched, trianguloid, leaf shaped
 2. many small quartz points of all types
 3. knives
 4. scrapers
 5. drills
 6. axes - grooved
 7. gouges
 8. plummets - fine and rough
 9. steatite vessels
 10. mortars and pestles

Negative determinants are:

- a. bone industry (existence suspected)
- b. copper industry
- c. tobacco complex (applies only to Concord at present)
- d. burial mounds
- e. cremations, or ossuary burials
- f. hematite complex
Focus Concord River Valley - 3 sites used

Linked Traits (appearing in all 3 sites) are:

a. arrowpoints
 1. stemmed
 2. notched
 3. trianguloid
 4. leaf shaped

b. spearheads - over 3" long

c. knives
 1. trianguloid
 2. stemmed

d. scrapers
 1. end
 2. side

e. drills
f. axes - grooved
g. gouges
h. hammers
 1. chipped stones
 2. beach stones
i. pendants pierced
j. "banner stones" or (Bipennate problematicals)
k. pottery - steatite only
l. pendants
m. turtlebacks

Diagnostic Traits (appearing in one or two sites but not 3) are:

a. slate ulus 2 sites
b. celts 2

c. plummets 2

d. copper coins (possibly intrusive) 2

e. gunflints (possibly intrusive) 2

f. gorgets 1

g. pottery - clay 1

h. gravers 1

i. lead bullets (possibly intrusive) 1

j. sinkers 1

Range - Concord and Sudbury River Valleys and probably elsewhere.
<table>
<thead>
<tr>
<th>Components</th>
<th>#1 Dakin Brook</th>
<th>#2 Bedford Plains</th>
<th>#3 Pantry Brook</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. arrowheads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. stemmed</td>
<td>7</td>
<td>59</td>
<td>16</td>
</tr>
<tr>
<td>2. trianguloid</td>
<td>22</td>
<td>129</td>
<td>14</td>
</tr>
<tr>
<td>3. notched</td>
<td>9</td>
<td>166</td>
<td>5</td>
</tr>
<tr>
<td>4. leaf</td>
<td>17</td>
<td>114</td>
<td>12</td>
</tr>
<tr>
<td>5. small quartz (all 4 types)</td>
<td>13</td>
<td>165</td>
<td>228</td>
</tr>
<tr>
<td>6. broken</td>
<td>12</td>
<td>245</td>
<td>25</td>
</tr>
<tr>
<td>b. spearheads over 3" long</td>
<td>1</td>
<td>4</td>
<td>4 Linked all 3 sites</td>
</tr>
<tr>
<td>c. knives, trianguloid and stemmed</td>
<td>31</td>
<td>51</td>
<td>16</td>
</tr>
<tr>
<td>d. scrapers, end and side</td>
<td>17</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>e. drills</td>
<td>2</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>f. axes, grooved</td>
<td>1</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>g. gouges</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>h. hammers, chipped stone</td>
<td>4</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>4. beach stone</td>
<td>4</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>i. pendants, pierced</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>j. banner stones</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>k. pottery steatite sherds</td>
<td>3</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>l. pestles</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>m. turtle backs</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>n. slate ulus</td>
<td>x</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>o. celts</td>
<td>x</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>p. plummets</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>q. copper coins</td>
<td>1</td>
<td>1</td>
<td>x Linked on 2 sites</td>
</tr>
<tr>
<td>r. gunflints</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>s. gorgets</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>t. pottery clay sherds</td>
<td>x</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>u. gravers</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>v. lead bullets</td>
<td>2</td>
<td>x</td>
<td>2 One site</td>
</tr>
<tr>
<td>w. sinkers</td>
<td>x</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>x. tube fragment</td>
<td>x</td>
<td>1</td>
<td>x Only</td>
</tr>
<tr>
<td>y. paint cups</td>
<td>x</td>
<td>2</td>
<td>x</td>
</tr>
</tbody>
</table>

Note: Some items are marked with an 'x' indicating their presence even though they are not included in the table.
The Dolly Bond steatite quarry, site M-32/6, is located in the town of Millbury, Massachusetts, about a quarter of a mile east of the new Worcester to Providence highway (Route 122A) just north of Hathaway Pond and the Sutton town line. It is about three quarters of a mile southeast of the steatite quarry in Bramanville which was investigated by Professor F.W. Putnam in 1895. The Dolly Bond quarry, however, was only discovered about five years ago, except for the surface and our work is still undisturbed.

During the summer of 1939, the writer, with the assistance of Messrs. Karl Dodge and C.C. Ferguson excavated a trench three feet wide, from the west side of the quarry to the middle. Later, through the kindness of Dean Homer P. Little of Clark University, the assistance of several Clark students working under the National Youth Administration was secured and the trench was continued to the east side. In June, 1940, a test pit 6 by 3 feet was dug to check certain possibilities which had arisen from a study of the field notes. This test pit was to the north of the trench and in the northwestern portion of the quarry.

The quarry is situated on top of a small plateau about ten feet higher than the surrounding land. The plateau is about 100 by 200 feet but the surface debris covers only about 35 by 50 feet while the actual quarry is much smaller.
The profile shown in figure 1 is through the middle of the trench. To the west is shown an outcrop of granitic gneiss which forms the boundary of the quarry in that direction. Gneiss also forms the eastern boundary but it does not rise above the surface of the ground. Between these layers of gneiss the steatite occurs, with mica forming the joints.

As shown on the profile, the surface over the quarry is sunken. The sod layer, particularly at the bottom of the declivity, is very thick (about 4 to 8 inches) and rather like peat in composition.

Disregarding the sod layer, "A," there seem to be three layers in the debris. The top layer, "B," is tan in color and composed of fine glacial clay mixed with fine sand and a fair percentage of steatite and quartzite fragments; "C" is a brown layer similar in composition to "B" but darkened by the addition of rotted steatite; "D" is a darker layer of similar composition to "C" but mottled in appearance. The mottling consists of rough spheres of light and dark material about one inch in diameter. The layers are successively more compact towards the bottom. There is no distinct line between the layers as they blend into each other. Worked steatite and hard rock were found in all layers.

At the bottom is the steatite ledge over part of which was a thin layer (about 1½ inches thick) of a most compact composition, rusty in appearance, and made up of fragments of steatite, etc. It probably represents the debris caused by pecking the ledge. The surface of the steatite is very uneven and shows evidence of the quarrying operations. It is not homogeneous in composition and varies in hardness. It has a high content of mica and some form of iron. The width of the steatite is about 18 feet and the depth of the debris varies from 5 to 7 feet.

The most interesting find was a seat in the west end of the trench about three feet below the surface and under an overhanging slab of the ledge. The seat proper consisted of a flatish slab of micaceous gneiss 25 by 15 by 1½ inches carefully set upon five pieces of steatite with its long dimension parallel to the outcrop. The five basal pieces had apparently been set in place for the particular purpose of forming a foundation for the seat, as their tops were all at the
same level and the bottom portions triangular in cross section with the apex down. They were about 6 inches long and 3 inches wide. Between them and directly under the seat there was an air space. A squirrel had evidently taken advantage of this man-made nest as four hickory nuts were found in it, and a squirrel hole led in its general direction.

The base for the seat occurred at the dividing line between the "B" and "C" layers. In front of the seat, a few inches lower down, and again further out at the same level as the seat, both to the right and to the left, were layers of steatite powder one inch thick. These deposits of powder were not directly in front of the seat but to each side and at the same level.

To the northeast, this powder layer extended in a band about 3 feet wide a distance of at least 10 feet and cut through the line between the "B" and "C" layers. Throughout this distance the powder layer was approximately level and varied in thickness from 1 to 2 inches.

All this seems to indicate that the seat was assembled for the express purpose of use while working the steatite. This is further substantiated by the fact that all around the neighborhood of the seat, particularly to the sides, there were heavy concentrations of powder lenses and many chips. Many of the latter had dulled edges and had presumably seen service as files. Picks were not associated with the seat, being found not closer than 18 inches above or below it. All of the steatite nearby showed evidence of having been worked. All of the debris near the seat was much less compact than that in other portions of the excavation.

About two feet further down and in front of the seat was a pile of rocks (both steatite and quartzite) surmounted by a small flat slab about 8 by 16 inches. The debris between it and the seat consisted entirely of chips, lenses of powder, and fine light brown clay and sand. It is possible that this indicates the gradual filling-up of this portion while pots were finished by the user of the seat.
On the profile, the seat and powder layer are shown just above the line dividing layers "B" and "G". It will be noticed that the pile of rocks mentioned in the previous paragraph are shown on the line dividing the "C" and "D" layers. The dots between indicate a location of heavy concentration of chips and lenses of powder.

A similar concentration is shown near the east end in the same, "C", layer and above a powder layer which started at a large rock. The line dividing the "C" and "D" layers ended at this rock. However, no seat or similar feature was noted.

Quarry Tools

The implements found vary as to type, but were all of quartzite with the exception of one or two of granite.

Picks

A total of seventy-five picks were found, varying in weight from ½ to 2½ pounds and in size, from 3 by 2 by 1½ inches to 5½ by 4 by 2½ inches. They are all apparently hand picks and, in general, heavy in cross-section. All have been crudely sharpened to a point by the removal of large flakes.

One double-ended pick, square in cross-section and diamond shaped longitudinally was found. It is 10 inches long and 3 by 3 inches in cross-section.

Three very heavy picks had much the appearance of the striker of a sledge hammer except that one end was pointed. They vary in weight from 3 to 4 pounds and are all about 6½ inches long and 3 inches across.

One chisel-like pick was found. It weighs one pound, it measures 4 by 3 by 1½ inches and has been hammered on the poll.

Mauls

Into this classification we have put six implements which would have been very uncomfortable to use in one hand. While they may have been used with two hands, it seems more likely that they were hafted. Their shape can best be described by saying that they are one quarter of an oval pebble. In general the outside original curved surface remains. The points are crudely
chipped, resulting in a rounded axe-like blade which, if hafted from the flat vertical side, would have made them somewhat like a crude adze. The weight of these implements varies between 3½ and 5½ pounds.

Cores

Six sizeable cores weighing from 2½ to 5 pounds were found. These are considerably chipped but no definite shape is evident.

Hammer Stones

Ten rocks showing hammering on one end were found. They vary from 3/4 to 2½ pounds in weight. They may have been used either to knock off chips or to hammer the poll of chisels.

Files and Scrapers

Innumerable chips were found but their concentration was heaviest near powder layers. Twenty of them had edges which had been definitely dulled. They are about 3/4 of an inch thick and roughly triangular, about 3 inches long and 1½ inches high with curved edges. Only one shows secondary chipping.

Boulders

Four medium-sized boulders were found. They vary in weight from 20 to 75 pounds. One of them has a few chips removed so they may represent quarry tools.

Worked Steatite

Vessel Fragments

Twenty-five sherds of steatite vessels were found. Apparently six types of vessels were manufactured here. One is a rather large vessel with a ball handle 2½ inches in diameter. Not enough was found to determine the shape of the vessel.

A second type is shaped like a cereal dish. It is about 4½ inches in diameter and 2½ inches deep. It has no handle, but there are two shallow finger-grooves in each end.

A third type has the customary lug that is usually associated with large Indian steatite vessels. Vessels of this type appear to have been about 5 inches wide and 4 inches deep but we did not find a large enough fragment to get an idea of the length.
A fourth type is a shallow oval dish about 7 by 5 by 1½ inches. In place of a handle, there is a slight lowering of the rim at each end.

A fifth type is rectangular, about 3 inches wide and 2 inches deep, with a comparatively large rudimentary lug handle. We have no idea of the length.

The sixth type is similar to the cereal dish (Type 2 above) but it has a tiny half inch knob on the end.

Several sherds were found which indicated a rather large vessel but not enough was found to get an idea of the size or of the handle.

One rim sherd, 2½ inches long, has three radial grooves cut in it at an angle, as a decoration.

Other Worked Steatite

A vessel blank was found, indicating a vessel about 8 by 7 by 3½ inches with a lug handle.

Two steatite hammers (?) were found. They both are about 5 by 3 inches in cross section with a ½ inch groove all the way around and about 3 inches from one end. The other end had been fractured, raising the question that they may have been used as a hafted hammer to give a softened blow. One was 11 inches and the other 5 inches long.

Many pieces of steatite were found which showed working and pick marks. Some of the pick marks are triangular and as large as 3/4 inch across and 1/4 inch deep. There were also pieces with chisel marks and file marks.

Remains on the Ledge

Nine places from which vessels had been removed were found on the steatite ledge. The largest is 15 by 17 inches with a 2½ inch groove. The smallest was about 6 inches in diameter.

The most complete one is shown on the profile directly below the seat. It is 12 by 9 inches, oval, with a 5 inch wide groove 2 to 3 inches deep pecked around it. This groove is undercut as much as 1½ inches. When the Indians tried to break off the blank, the break followed a cleavage plane at an angle so that only the very top came off.
Charcoal

Occasional flecks of charcoal were found throughout the debris but in only a few places was the concentration heavy or were there other indications of fires. There was a very large amount of charcoal in the depression in the steatite ledge shown on the profile to the west. Another deposit about 3 feet to the north seemed like the remains of a flat piece of wood 18 by 6 by 1 inch; six inches under it was an ash deposit of the same dimensions.

In the test pit further north at a depth of 7 feet were large deposits covering several square feet with pockets between rocks 1 foot thick. Some of the earth had been discolored red. Nothing was found in association with the charcoal. Some of the charcoal seems to be the remains of oak.

General Comments

Samples from the bottom of the deposit were tested for pollen by Mr. Preston Smith at Yale University but only four pine and two hemlock grains were found.

While worked steatite was found in direct contact with the slab of gneiss which is shown on the profile as a roof over the seat, there is no reason to think that the Indians put this slab in place. It seems more likely that the tree, also shown on the profile, moved this slab into its present position.

No pipe blanks, points, bone or other indications of material culture were found which might aid in identifying the Indians who used this quarry.

Methods of Manufacture

As evidenced at this quarry, the method of manufacture of vessels did not differ markedly from that previously described with the exception of the use of scrapers as files.

The steatite was worked down by pecking with hand or hafted picks and the vessels roughed out upside down on the ledge. The outside was fairly smooth at this time. A groove was pecked around the blank and undercut. After the blank was broken off the ledge, the inside was pecked out with hand picks assisted by chisels.
Small vessels, at least, had their insides worked by filing. This consisted of the removal of material by filing radially (not scraping) with the rounded edge of a triangular quartzite chip. The striations are as close together as possible with very little crossing over and no crisscrossing. The radius of the curvature of the blade is less than that of the inside of the vessel. By experimentation it was found that this was a most efficient way to work the steatite.

Presumably the final finishing process was scraping.

Conclusions

It seems that we have here not only a quarry but also a manufacturing plant. Vessels were finished here at least up to the point where they were suitable for aboriginal trade. As the quarrying progressed to the south, the north end was filled over and a portion was levelled off to form a working floor for manufacturing.

As this working floor cuts through the layers, it seems that the layers are probably the results of weathering. There is no difference in the tools above and below the floor and while there is a possibility that the vessel forms differ, there are not enough specimens to say whether there was any change in them during the use of this quarry.

It is believed that the concavity of the land over the quarry is the result of the removal of vessels. From the small number of broken vessels found, it seems that manufacturing accidents were rare. Assuming that the land was originally horizontal it might be estimated that about 500 vessels were made here.

It is interesting to note that picks from the Bramanville quarry on exhibition at the Peabody Museum in Cambridge and at the Robert S. Peabody Foundation for Archaeology at Andover are uniformly of a different type. The ones from Dolly Bond are short and wide, single pointed, and made by chipping while, in general the others are long and narrow, many double pointed, with comparatively little chipping and in about one-third of the cases are polished at the point by grinding or by use. This is doubly interesting when we recall that Bramanville and Dolly Bond are
less than a mile apart. (There are some chipped picks at Cambridge but they come from the North Wilbraham quarry.) However, the vessel forms known from Bramanville are rather close to those from Dolly Bond although more large vessels seem to be represented from Bramanville.

There seems to have been specialization in various quarries. For instance, one quarry near Providence abounds in pipe blanks while none have been found at Dolly Bond in excavating 800 cubic feet of material. There yet remains to be settled the question of the period at which soapstone vessels were commonly used. It is to be hoped that further work will be done on these problems.

Bibliography

Centennial History of the Town of Millbury, The Davis Press.

Orchard, Fred - unpublished, Peabody Museum, Cambridge, Mass. (manuscript)

Kengla, L.A. - Archaeology of the District of Columbia (R.A. Waters & Son)

Peck, C.E. - History of Wilbraham, 1913.

Worcester Society of Antiquity - Proceeding 1895.

Among the merchants of Bristol, England the news of Bartholomew Gosnold's successful trading voyage of 1602 attracted great interest and they responded to the urgings of Richard Hakluyt, by arranging an immediate follow-up voyage to the New England coast. In two small vessels called the "Speedwell" and the "Discoverer" Captain Martin Pring set out to follow Gosnold's direct route. Reaching the Maine coast in June 1603, the vessels coasted southward looking for sassafras. They did not find it in sufficient quantities until they dropped anchor in the harbor of what is now Plymouth, Massachusetts. The following excerpts from Captain Pring's own account of his stay at Plymouth of seven weeks are reprinted from George P. Winship's "Sailor's Narratives of Voyages along the New England Coast 1524 to 1624." The account was originally published in 1625 in the fourth volume of "Purchas His Pilgrimes".

"At our going on shore upon view of the people and sight of the place, wee thought it convenient to make a small baricado to keepe diligent watch and ward in, for the advertizement and succour of our men, while they should worke in the Woods. During our abode on shore, the people of the Countrey came to our men sometimes ten, twentie, fortie or three-score, and at one time one hundred and twentie at once. We used them kindly, and gave them divers sorts of our meanest Merchandize. They did eat Pease and Beanes with our men. Their owne victuals were most of fish.

"We had a youth in our company that could play upon a Gitterne, in whose homely Musicke they tooke great delight, and would give him many things, as Tobacco, Tobacco-pipes, Snakes skinnes of sixe foot long, which they use for Girdles, Fawnes skinnes, and such like, and danced twentie in a Ring, and the Gitterne in the middest of them vising many Savage gestures, singing lo, la, lo, la, lo: him that first brake
the ring, the rest would knocke and cry out upon. Some few of them had plates of Brasse a foot long, and halfe a foote broad before their breasts. Their weapons are Bowes of five or sixe foot long of Wich-hasell, painted blacke and yellow, the strings of three twists of sinewes, bigger then our Bow-strings. Their Arrowes are of a yard and an handfull long not made of Reeds, but of a fine light wood very smooth and round with three long and deepe blacke feathers of some Eagle, Vulture, or Kite, as closely fastened with some binding matter, as any Fletcher of ours can glue them on. Their Quiuers are full a yard long, made of long dried Rushes wrought about two handfuls broad above, and one handful beneath with prettie workes and compartiments, Diamant wise of red and other colours.

"We carried with us from Bristoll two excellent Mastiues, of whom the Indians were more afraid, then of twentie of our men. One of these Mastiues would carrie a halfe Pike in his mouth. And one Master Thomas Bridges a Gentleman of our company accompanied only with one of these Dogs and passed sixe miles alone in the Countrey having lost his fellowes, and returned safely. And when we would be rid of the Savages company wee would let loose the Mastiues, and suddenly with out-cryes they would flee away. These people in colour are inclined to a swart, tawnie, or Chestnut colour, not by nature but accidentally, and doe weare their haire brayded in foure parts, and trussed up about their heads with a small knot behind: in which haire of theirs they sticke many feathers and toyes for braverie and pleasure. They couer their priuities only with a piece of leather drawne betwixt their twists and fastened to their Girdles behind and before: whereunto they hang their bags of Tobacco. They seeme to bee somewhat jealous of their women, for we saw not past two of them, who weare Aprons of Leather skins before them downe to the knees, and a Beares skinne like an Irish Mantle over one shoulder. The men are of stature somewhat taller then our ordinary people, strong, swift, well proportioned, and given to treacherie, as in the end we perceived.

"Their Boats, whereof we brought one to Bristoll, were in proportion like a Wherrie of the River of Thames, seventene foot long and foure foot broad, made of the Barke of a Birchtree, farre exceeding in
bignesse those of England: it was sowed together with strong and tough Oziers or twigs, and the seames covered over with Rozen or Turpentine little inferior in sweetnesse to Frankincense, as we made triall by burning a little thereof on the coales at sundry times after our coming home: it was also open like a Wherrie, and sharpe at both ends, saving that the beake was a little bending roundly upward. And though it carried nine men standing upright, yet it weighed not at the most above sixtie pounds in weight, a thing almost incredible in regard of the largenesse and capacitie thereof. Their Oares were flat at the end like an Ouen peele, made of Ash or Maple very light and strong, about two yards long, wherewith they row very swiftly: Passing up a River we saw certaine Cottages together, abandoned by the Savages, and not farre off we beheld their Gardens and one among the rest of an Acre of ground, and in the same was sowne Tobacco, Pompions, Cowcumbers and such like; and some of the people had Maiz or Indian Wheate among them."

Some five weeks later while still at Plymouth and after the Discoverer had been sent back to England with a full load of sassafras, Pring describes for us the following first record of discord between natives and Europeans.

"On a day about noone tide while our men which used to cut down Sassafras in the Woods were asleepe, as they used to doe for two houres in the heat of the day, there came downe about seven score Savages armed with their Bowes and Arrowes, and environed our House or Barricado, wherein were foure of our men alone with their Muskets to keepe Centinell, whom they sought to have come downe unto them, which they utterly refused, and stood upon their guard. Our Master likewise being very carefull and circumspect having not past two with him in the shippe put the same in the best defence he could, lest they should have invaded the same, and caused a piece of great Ordnance to bee shot off, to give terour to the Indians, and warning to our men which were fast asleepe in the Woods: at the noyse of which Peece they were a little awaked, and beganne a little to call for Foole and Gallant, their great and fearefull Mastiues, and full quitely laid themselves downe againe, but beeing quickned up eftsoones againe with their Mastiues, greate Foole with an halfe Pike in his mouth drew downe to their ship: whom when the Indians beheld afarre off, with the Mastiue which they
most feared, in dissembling manner they turned all to a jest and sport, and departed away in a friendly manner: yet not long after, even the day before our departure, they set fire on the Woods where wee wrought, which wee did behold to burne for a mile space, and the very same day that wee weighed Anchor, they came downe to the shoare in greater number, to wit, very neere two hundred by our estimation, and some of them came in their Boates to our ship, and would have us come in againe: but we sent them backe, and would none of their entertainment."
Much interest is being shown today in the hafting of artifacts to illustrate more effectively to the public how the Indian actually used the implements he had fashioned out of stone. Much of this work is done by workmen who may be skilled with tools but who know little or nothing about the life of the Indian as he knew it. The result is too often failure, in that the work shows signs of the whitemen's tools and not the stone tools of the Indian.

After much careful study and thought on the subject, I decided to haft various types of implements in an effort to find the Indian way of doing it. My work has opened up what seem to be important discoveries as to the stone tools that were used and may suggest further divisions in the classifying of certain types of artifacts.

For those implements which have the single groove, such as hatchets, axes and tomahawks I found the most natural and best method was like that illustrated by the hafted hatchet in the Norris Bull collection in West Hartford, Connecticut; thought to have been the work of Indians and found in the cellar of an old colonial house. A sapling with two forked branches is selected in the right size. While green the inside of the fork is worked out to accommodate the groove of the artifact. Now it is my belief that the Indian had a specific tool for doing this important work of groove shaping and after careful search I found on an old village site what seems to me to be this tool. It is similar to a specimen in a local collection which has been pitted on both sides, perhaps for the fingers. They are both made of conglomerate with rounded edges showing wear and with pecked out and polished places for the fingers to grip. They weigh a pound or two and the edges are approximately the size of an average axe or hatchet groove. For want of a better name this tool might be called - a HANDLE SHAPER - and it does its work by abrasion, not by cutting. (see cut)
After the groove is made and the implement properly seated the outside surfaces of the fork are worn down thin enough to permit bending. No doubt this work was accomplished by the Indians with the same grinding stone as was used for making the notch. Also the shaping of the handle could very effectively have been done with this same tool and the finishing by scraping, if required, afterwards.

In the preliminary shaping of the handle, I have also found quite useful a so-called roughing scraper. This tool is convenient for the hand, sometimes as much as six or seven inches long, made of hard tough stone with a large coarse saw-tooth edge on one side and quite thick. After the shaping is completed a hand finishing scraper was probably used to work away any rough edges.

When the branches of the fork have been bent around the groove of the stone implement, they are cut off where they meet and held in place until dry. Then leather thongs are bound around their outside and the now completely incased artifact. They are woven back and forth from one side to the other until a tight union is made between the stone and the handle.

The grip on the handle may have been made by a criss-cross design cut in the actual wood as in the case of the Norris Bull specimen or by the winding of leather in a spiral. Or it is possible that the leather may have been sewed on as in the case of the Indian hafted two ball war club in the same collection, found a foot underground in a stone incased cache.

Right here let me say, it seems important that we make a distinction in the classifying of artifacts, between finished implements used in the daily pursuit of hacking a living out of the wilderness and those implements used as tools in fashioning these finished artifacts. In the actual work of hafting I have discovered the need of certain tools that may have been previously overlooked by the average collector. This need has helped to identify these as tools and not as flakes, turtle-backs and other so-called rejects usually discarded as of no account. I am now satisfied that for tools the Indian did not always use well-finished stones, but any stone or flake of a convenient shape for the job. Then through long use
it would appear to be chipped or finished in a form commonly thought by all to have been the original condition of the tool. To me, the work method of analyzing, rather than the finished shape of the tool, is more important as a guide toward classifying and discovering what stones were actually used as tools.

Arrow making was perhaps carried on more extensively than any other form of hafting as literally thousands of arrows were used wherever a group of Indians lived. Consequently there should be more arrow making tools than any other kind. Unfortunately most collections have almost no specimens of this nature, to show how arrows were made. To me, a study of the tools that were used is perhaps of more interest than the collecting of arrowpoints and finished implements, for it uncovers the means by which early man worked out his existence.

In an effort to learn more about this subject I fashioned some arrows as the Indians would have done it, using their stone tools, right down to the cutting of the feathers. Now of course there were different styles of tools to suit the individual tastes of the different arrow makers but it seems fairly evident that the process and its different stages were the same no matter where or by whom the arrow was made. First, of course, came the selection of the wood for the shaft and I tried both white ash and willow. The latter was the easiest to work but both made excellent arrows.

In both cases the shafts had to be straightened and I found that this was easily accomplished as I scraped, while the wood was yet green, by the simple manipulation of the fingers. The surface heat generated by the scraping seemed to form a dry surface around the shaft which helped to hold it straight as it was bent. From this experience I found it hard to justify the claim formerly made, that a flat stone with a hole in its center was used as a straightener. I kept asking myself why one would go to the great trouble of drilling a hole through a stone when ones fingers were just as useful. The infrequency with which these so called straightening stones are found and the insistent daily need of some straightening device, due to the constant making of arrows would seem to indicate that few were used. Lacking a better
substitute it is likely that the fingers were the ordinary shaft straightener in most common use.

To remove the small knots in the stick, after peeling off the bark by hand, I found that a roughing scraper was required. After this a finishing scraper, which quite generally was a large flake of flint or quartzite with a sharp edge and of a size convenient to the hand. As the scraping proceeded small chips flaked off continually, so that after the finishing of a number of shafts a groove would appear in the scraper which in the beginning was only a flake.

Before the scraping was completed the arrow point was fitted into the narrow end of the shaft, but not until a notch of a suitable size had been filed out, with what I shall for want of a better name call, a NOTCHER. (see cut) Now this tool, I believe was generally a straight edged knife of a small size for hand use to be held in the fingers and of a thickness to accommodate the stem of the average point. In notching my shafts I used such a notcher made of quartzite which had the shape of a small flat clam shell. Since then I have tabulated nineteen other Notchers as evidence, all of different shapes from South Dakota, South Carolina, Lake Champlain and the Connecticut Valley. In every case, however, there is at least one fairly straight thin saw-tooth edge for filing and no shank for hafting.

After binding the point to the shaft by means of a fine wet gut a test of balance is taken. The fulcrum should come at a point just off center toward the point. If the larger end is too heavy to prevent this it is then scraped smaller until the correct balance is obtained.

At this point it will be found that the shaft is covered with splinters from the scraper and it becomes necessary to rub them off. For this purpose special shaft polishing stones were used, generally of a convenient size to fit the hand. I found one of a green stone (see cut) chipped flat and oval with the wear showing through the center on one side where the edge had become quite sharp from use, thus helping to effectively remove the splinters. Of course there were besides, all shapes of polishers no doubt, to suit the individual fancies of the different arrow
makers, but it is reasonable to suppose that whatever types were used should be found in fairly large quantities as it was a tool that was in use daily by many men.

After cutting a notch in the opposite end from the point for the bow string three half feathers must be attached just above this notch. It may seem impossible but I succeeded without too much trouble in not only splitting the quill, but cutting off the feathers to a suitable width in each case, with the same notcher I had used for notching the ends. Feather grooves were easily made with this same notcher and the feathers bound on after they were first held in place by pitch.

The arrow being completed I noticed that the flint notched arrow point of one of the shafts was loose even though it was bound tightly. On examination I found the cause was its wide shank which was almost twice the diameter of the shaft. I have often wondered how notched points with wide shanks like this could be held firmly in a slender shaft so I set out to find the answer. To use a large diametered shaft of the same width of the point's shank would be much too clumsy and ineffective as a weapon. With this in mind I stuck to the slender shaft idea and went to work. Knowing that the Indian was a past master in the art of wedging I tried driving four little wooden wedges, one on each side of the shaft under the thongs on both sides of the point. This had the same effect as though the shaft had been widened at this point and I was gratified to find that it seemed to be the correct answer to the problem.

Now I wish to take issue with Jesse Brewer in his article "Workshop Logic" in which he states that it took at least six months to make an arrow shaft. I made my shafts using Indian stone tools in about two days, working off and on while the wood was green and allowing the wood to dry as I worked. If allowed to lie in the sun between work stages the wood will dry in about forty-eight hours and when dry will be straight as the straightening has been done while green and pliable. I also claim that the shaft should be worked while green as it scrapes and polishes easier to say nothing of holding its straightened shape after the kinks are bent out when it is finally dry.
HANDLE SHAPER

3/5 Size

- Round surface for grooving handle
- Grooved surface shows wear from shaping
- Surface flattened and slightly grooved from shaping handle

SHAFT POLISHER

3/4 Size

- Green stone from Connecticut Valley
- Side and edge used for polishing

NOTCHER

- Used in making arrow shafts referred to in article
- (Connecticut Valley quartzite)
- 3/4 Size

NOTCHER

- Flint from North Carolina
- 3/4 Size
REPORT ON STONE RING AT LENOX, MASS.

by

BENJAMIN L. SMITH

On November 2, 1939, Miss Mabel Choate reported to Miss Mary Lee that she was very anxious that the Society look into the subject of "The Indian Council Ring" on the shore of Pontoosuc Lake in the Toppan Forest at Lenox. The ring, it was reported, was being gradually destroyed.

Miss Lee on November 6 sent Miss Choate's letter to the Project Committee, suggesting that Mr. Clay Perry of Pittsfield and others look into the matter with the idea of preserving the ring if it proved authentic. President Robbins also interested himself in the matter and wrote Mr. Perry, as did the chairman of the Project Committee.

On November 16, Mr. Perry sent the writer a long letter outlining the history of the ring, which he had personally visited and photographed. Mr. Perry carefully refrained from endorsing the ring as Indian work, although he stated he intended writing articles regarding it for the Springfield Republican and the Berkshire Evening Eagle, of Pittsfield, at their request. Mr. Perry subsequently sent the writer a clipping of the article in the Berkshire Evening Eagle of December 9, 1939.

Two visits to the site were planned, but neither was made for various reasons. When the Holyoke Group of the Massachusetts Archaeological Society was formed in the spring of 1940, the accumulated information was sent to Mr. William Fowler, the chairman, for action. Mr. Fowler visited the site with Mr. Perry, and on June 4 reported that the ring appeared to be Indian work, but wisely suggested that an excavation be carried out in order that identification be made certain. He sent in an exceptionally fine plan, and cross section drawing, made as a result of the survey on May 30, 1940.

The report and drawing was examined carefully by several members, and it was decided that the ring was probably not Indian, but that an excavation should be made at an early date. Mr. Fowler was asked to have his group undertake this excavation, and on September 23 reported as follows:
"The so-called Council Ring theory has been exploded. We have dug to the bottom of the fire pit and found baked clay with lime caked against it, on top of a stone floor. Some of the clay fragments had curved surfaces on one side, proving without a doubt that some one hundred fifty years or so ago, the early pioneers had some kind of a kiln here, probably lime, although today there is no lime deposit showing anywhere in the vicinity."

This is a fine example of how rumors which gather so thickly about ancient remains, may become completely distorted. While we are all sorry to see an Indian Council Ring go aglimmering, we sincerely hope that the local historical society will take steps to preserve this colonial kiln.