Publication Date

2013

Document Type

Article

Abstract

Replication by Escherichia coli DNA polymerase III is disrupted on encountering DNA damage. Consequently, specialized Y-family DNA polymerases are used to bypass DNA damage. The protein UmuD is extensively involved in modulating cellular responses to DNA damage and may play a role in DNA polymerase exchange for damage tolerance. In the absence of DNA, UmuD interacts with the α subunit of DNA polymerase III at two distinct binding sites, one of which is adjacent to the single-stranded DNA-binding site of α. Here, we use single molecule DNA stretching experiments to demonstrate that UmuD specifically inhibits binding of α to ssDNA. We predict using molecular modeling that UmuD residues D91 and G92 are involved in this interaction and demonstrate that mutation of these residues disrupts the interaction. Our results suggest that competition between UmuD and ssDNA for α binding is a new mechanism for polymerase exchange.

Original Citation

Chaurasiya K.R., Ruslie C., Silva M.C., Voortman L., Nevin P., Lone S., Beuning P.J., Williams M.C. (2013). Polymerase manager protein UmuD directly regulates Escherichia coli DNA polymerase III α binding to ssDNA. Nucleic Acids Research, 41(19), 8959-8968. doi: 10.1093/nar/gkt648.

Identifier

doi: 10.1093/nar/gkt648

Included in

Chemistry Commons

Share

COinS