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Abstract. The permutahedron 1

n
nπ − ⊆ ℜ is defined as the convex hull of all vertices 

obtained by permuting the coordinates of the vector <1, 2, …, n>.[11]  Its vertices 
can be indentified with the permutations in nS  in such a way that two vertices are 
connected by an edge if and only if the corresponding permutations differ by an 
adjacent transposition (the permutation that maps ix ia  corresponds to the 
vertex 1 2, ,.., nx x x ).  In this paper, we prove by induction that nπ  is Hamiltonian for 
n ≥ 2. Our constructive proof finds a Hamiltonian cycle for nπ  given any 
Hamiltonian cycle of 1nπ − .  
 
Mathematics subject classification: 05C45 
 
Keywords: Hamiltonian cycle, Permutation, Permutahedron 
 
 
Introduction:  The permutahedron is a beautiful geometric object, bringing together 
concepts from combinatorics, geometry and discrete mathematics.  The problem of 
generating a list of permutations of 1, 2, …, n via a sequence of transpositions has 
been thoroughly explored (see the surveys by Savage [7] and Sedgewick [8], or any 
of [1], [2], [4], [6] or [10]).  In the early 1960’s, Johnson [5] and Trotter [9] 
independently discovered an elegant algorithm for generating this list of permutations 
using only adjacent permutations, thereby describing a method of finding a 
Hamiltonian cycle on the edge graph of the permutahedron.  In this paper we present 
a method of finding such a Hamiltonian cycle which differs from that of Johnson and 
Trotter.  In particular, our method exploits the polyhedral structure of the 
permutahedron in its inductive construction.  In [3], we use our proof to find some 
lower bounds for the number of Hamiltonian cycles of the permutahedron.  
 

Theorem:  The edge graph of the permutahedron nπ is Hamiltonian (n>1). 
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Definition 1: The permutahedron 1

n
nπ − ⊆ ℜ is defined as the convex hull of all 

vertices obtained by permuting the coordinates of the vector <1, 2, …, n>.[11]   Its 
vertices can be identified with the permutations in nS  in such a way that two vertices 
are connected by an edge if and only if the corresponding permutations differ by an 
adjacent transposition. 
 
           132                      312      
 
 
    123                                     321  
 
 
 
         213                        231      
      
                       2π  
 
 
 
 
           3π  
Definition 2:  A sequence of transpositions 
 
 As we stated earlier, two vertices of a permutahedron are adjacent if they differ by an 
adjacent transposition. For example, 123 is adjacent to 132 by the transposition 23, 
and adjacent to 312 by the transposition 12. A cycle is determined by identifying a 
vertex and a sequence of those adjacent transpositions, for example if we start with 
the vertex 123 and the sequence 12-23-12-23-12-23, we get the cycle 123-213-231-
321-312-132-123. 
 
Proof:  We prove that nπ  is Hamiltonian by induction.   
 
Base case: 2π is a hexagon.  The edges of the hexagon form a Hamiltonian cycle 
connecting its vertices. 
 
Inductive assumption: Assume there is a Hamiltonian cycle connecting the vertices 
of 1nπ − . 
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Inductive step: We shall use this cycle to show the existence of a Hamiltonian cycle 
connecting the vertices of nπ (n>2). 
 
 
The permutahedron nπ  has (n+1)! vertices, each of which is equated with a 
permutation of the numbers 1, 2, 3, ... n+1.  List these in lexicographic order. 
If n = 4 the vertices of 3π  are as follows: 
 
 

1234 
1243 

2134 
2143 

3124 
3142 

4123 
4132 

1324 
1342 

2314 
2341 

3214 
3241 

4213 
4231 

1423 
1432 

2413 
2431 

3412 
3421 

4312 
4321 
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For n = 5, the vertices of 4π are: 
 

12345 
12354 
12435 
12453 
12534 
12543 
 

21345 
21354 
21435 
21453 
21534 
21543 

31245 
31254 
31425 
31452 
31524 
31542 

41235 
41253 
41325 
41352 
41523 
41532 

51234 
51243 
51324 
51342 
51423 
51432 

13245       
13254       
13425       
13452       
13524 
13542 
 

23145 
23154 
23415 
23451 
23514 
23541 

32145 
32154 
32415 
32451 
32514 
32541 

42135 
42153 
42315 
42351 
42513 
42531 

52134 
52143 
52314 
52341 
52413 
52431 

14235 
14253 
14325 
14352 
14523 
14532 
 

24135 
24153 
24315 
24351 
24513 
24531 

34125 
34152 
34215 
34251 
34512 
34521 

43125 
43152 
43215 
43251 
43512 
43521 

53124 
53142 
53214 
53241 
53412 
53421 

15234 
15243 
15324 
15342 
15423 
15432 
 

25134 
25143 
25314 
25341 
25413 
25431 

35124 
35142 
35214 
35241 
35412 
35421 

45123 
45132 
45213 
45231 
45312 
45321 

54123 
54132 
54213 
54231 
54312 
54321 

 
Note that the first n! vertices in the list (the first column in the array) have a 1 as the 
first digit in their permutation, the next n! vertices have a 2 as their first digit, etc. 
 

Indeed, the lexicographic ordering sorts the vertices of nπ  into n+1 blocks (the 
columns of the array) of n! vertices, each block representing the vertices of an n-1 

dimensional facet of nπ ; each of these facets has the shape of 1nπ − . We will call the 
n-1 permutahedron formed by the vertices whose permutations start with 1 “facet 1”  
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of our permutahedron, and the n-1 permutahedron whose vertices start with k will be 
called “facet k” of our permutahedron 
 
 
By the inductive hypothesis, we may connect the vertices of facet 1 in a Hamiltonian 
cycle. 
 
 
Connect the vertices of each of the remaining (n-1)-dimensional permutahedral facets 
(there are n of these facets, not including facet 1) in a similar fashion.  In particular, 
we take care that the Hamiltonian cycle visits the vertices of each facet in the same 
lexicographic order that the vertices of the first were visited in. 
 
 
 
An example: 3π  
 
 

 
 
 
Notice that each facet (column in the array) is just 2π and each cycle in each facet has 
the same sequence of transpositions 23-34-23-34-23-34-23. 
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An example: 4π  
 

 
 
 
 

Each facet (column in the array) is just 3π and each cycle in each facet has the same 
sequence of transpositions 23-34-23-34-45-34-23-34-45-34-45-34-23-34-23-34-45-
34-23-34-45-34-45-34. 
 
Now we join the Hamiltonian cycle connecting vertices of facet 1 to the one 
connecting the vertices of facet 2 to generate a Hamiltonian cycle connecting all  
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vertices with first coordinate 1 or 2.  To do this, we locate a "jumper" edge in the 
cycle that connects two vertices whose permutation starts 12; call it 12a.   
  
Claim:  Such a vertex must exist. 
 
Consider any vertex whose permutation starts with 12.  It has n neighbors.  Of these, 
n-2 also start with 12, one starts with 21, and one starts with 1 and has a second digit 
that is not 2.  The Hamiltonian cycle connecting the vertices of facet 1 does not visit 
the neighbor whose permutation starts with 21, so at most one of the edges in the 
cycle leads from 12a to a vertex whose permutation does not starting with 12. Hence, 
at least one edge of the Hamiltonian cycle must connect 12a to some vertex 12b 
whose permutation starts with 12.  We will remove this jumper to create a "bridge" 
connecting the Hamiltonian cycles of facets 1 and 2. 
 
Because the vertices of facet 2 are connected in the same lexicographic order as the 
vertices of facet 1, there is a pair of vertices 21a and 21b lexicographically 
correspondent with 12a and 12b that are joined by an edge of the Hamiltonian cycle 
connecting the vertices of facet 2.  Deleting edges (12a, 12b) and (21a, 21b) and 
replacing them by (12a, 21a) and (12b, 21b) joins the two Hamiltonian cycles into 
one larger Hamiltonian cycle connecting all vertices of facets 1 and 2. 
 
A similar argument serves to join facet k to facet k+1 by replacing "jumpers" (k k+1 
a, k k+1 b) and (k+1 k a, k+1 k b) by the "bridge" (k k+1 a, k+1 k a) and (k k+1 b, 
k+1 k b). 
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Note that since facet k is connected to facet k-1 by edges joining vertices starting with  
k-1,  k and k,  k-1, these changes to the cycle on facet k do not affect the choice of 
jumpers available to form bridges from vertices starting with k,  k+1 to those starting 
k+1,  k. 
 
Joining the Hamiltonian cycle traversing facet k to that traversing facet k+1 for k 

ranging from 1 to n creates a Hamiltonian cycle traversing the edge graph of nπ . 
 
Here is a Hamiltonian cycle of 4π generated by this construction: 
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